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Abstract Recently, there have been great interests for

computer-aided diagnosis of Alzheimer’s disease (AD) and

its prodromal stage, mild cognitive impairment (MCI).

Unlike the previous methods that considered simple low-

level features such as gray matter tissue volumes from

MRI, and mean signal intensities from PET, in this paper,

we propose a deep learning-based latent feature represen-

tation with a stacked auto-encoder (SAE). We believe that

there exist latent non-linear complicated patterns inherent

in the low-level features such as relations among features.

Combining the latent information with the original features

helps build a robust model in AD/MCI classification, with

high diagnostic accuracy. Furthermore, thanks to the

unsupervised characteristic of the pre-training in deep

learning, we can benefit from the target-unrelated samples

to initialize parameters of SAE, thus finding optimal

parameters in fine-tuning with the target-related samples,

and further enhancing the classification performances

across four binary classification problems: AD vs. healthy

normal control (HC), MCI vs. HC, AD vs. MCI, and MCI

converter (MCI-C) vs. MCI non-converter (MCI-NC). In

our experiments on ADNI dataset, we validated the

effectiveness of the proposed method, showing the accu-

racies of 98.8, 90.7, 83.7, and 83.3 % for AD/HC, MCI/

HC, AD/MCI, and MCI-C/MCI-NC classification, respec-

tively. We believe that deep learning can shed new light on

the neuroimaging data analysis, and our work presented the

applicability of this method to brain disease diagnosis.

Keywords Alzheimer’s disease (AD) � Mild cognitive

impairment (MCI) � Multi-modal classification � Deep

learning � Latent feature representation

Introduction

Alzheimer’s disease (AD), characterized by progressive

impairment of cognitive and memory functions, is the most

prevalent cause of dementia in elderly people and is rec-

ognized as one of the major challenges to global health

care systems. A recent research by Alzheimer’s association

reports that AD is the sixth-leading cause of death in the

United States, rising significantly every year in terms of the

proportion of cause of death (Alzheimer’s 2012). It is also

indicated that 10–20 % of people aged 65 or older have

mild cognitive impairment (MCI), a prodromal stage of AD

(Alzheimer’s 2012), and situated in the spectrum between

normal cognition and dementia (Cui et al. 2011). Due to

the limited periods for which the symptomatic treatments

are available, it has been of great importance for early

diagnosis and prognosis of AD/MCI in the clinic.

To this end, researchers in many scientific fields have

devoted their efforts to understand the underlying mecha-

nism that causes these diseases and to identify pathological

biomarkers for diagnosis or prognosis of AD/MCI by

analyzing different types of neuroimaging modalities, such

as magnetic resonance imaging (MRI) (Davatzikos et al.

2011; Wee et al. 2011), positron emission tomography

(PET) (Nordberg et al. 2010), functional MRI (fMRI)

H.-I. Suk � D. Shen (&)

Biomedical Research Imaging Center (BRIC) and Department

of Radiology, University of North Carolina, Chapel Hill,

NC 27599, USA

e-mail: dgshen@med.unc.edu

H.-I. Suk

e-mail: hsuk@med.unc.edu

S.-W. Lee � D. Shen

Department of Brain and Cognitive Engineering,

Korea University, Seoul 136-713, Republic of Korea

123

Brain Struct Funct (2015) 220:841–859

DOI 10.1007/s00429-013-0687-3



(Greicius et al. 2004; Suk et al. 2013), cerebrospinal fluid

(CSF) (Nettiksimmons et al. 2010), etc. In terms of clinical

diagnosis, structural MRI provides visual information

regarding the macroscopic tissue atrophy, which results

from the cellular changes underlying AD/MCI, and PET

can be used for the investigation of the cerebral glucose

metabolism (Nordberg et al. 2010), which reflects the

functional brain activity.

While these neuroimaging techniques have contributed

substantially to our observation of the brain, significant

breakthroughs in how we can efficiently understand and

analyze the observed information have been of great con-

cerns for the last decades. In that respect, machine learning

has provided nice tools to tackle these challenges. Specif-

ically, it has proved for their efficacy in multivariate pat-

tern analysis and feature selection for clinical diagnosis. It

is also impressive that they offered a new leverage strategy

to efficiently fuse complementary information from dif-

ferent modalities including MRI, PET, biological and

neurological data for discriminating AD/MCI patients from

healthy normal controls (HC) (Fan et al. 2007; Perrin et al.

2009; Kohannim et al. 2010; Walhovd et al. 2010; Cui

et al. 2011; Hinrichs et al. 2011; Zhang et al. 2011; Wee

et al. 2012; Westman et al. 2012; Yuan et al. 2012; Zhang

and Shen 2012). Kohannim et al. (2010) concatenated

features from modalities into a vector and used a support

vector machine (SVM) classifier. Walhovd et al. (2010)

applied multi-method stepwise logistic regression analyses,

and Westman et al. (2012) exploited a hierarchical mod-

eling of orthogonal partial least squares to latent structures.

Hinrichs et al. (2011) and Zhang et al. (2011), indepen-

dently, utilized a kernel-based machine learning technique.

There have been also attempts to select features by means

of sparse learning, which jointly learns the tasks of clinical

label identification and clinical scores prediction (Yuan

et al. 2012; Zhang and Shen 2012).

Although these researches presented the effectiveness of

their methods in their own experiments on multi-modal

AD/MCI classification, the main limitation of the previous

work is that they considered only simple low-level features

such as cortical thickness and/or gray matter tissue vol-

umes from MRI (Klöppel et al. 2008; Gray et al. 2013;

Zhang et al. 2011; Zhang and Shen 2012; Cui et al. 2011;

Desikan et al. 2009; Walhovd et al. 2010; Yao et al. 2012;

Westman et al. 2012; Ewers et al. 2012; Zhou et al. 2011;

Li et al. 2012; Liu et al. 2012), mean signal intensities from

PET (Mosconi et al. 2008; Walhovd et al. 2010; Nordberg

et al. 2010; Zhang et al. 2011; Zhang and Shen 2012; Gray

et al. 2013), and t-tau, p-tau, and b-amyloid 42 (Ab42) from

CSF (Cui et al. 2011; Yuan et al. 2012; Zhang et al. 2011;

Zhang and Shen 2012; Walhovd et al. 2010; Westman

et al. 2012; Ewers et al. 2012; Tapiola et al. 2009). In this

paper, we assume that there exists hidden or latent high-

level information, inherent in those low-level features such

as relations among them, which can be helpful to build a

more robust model for AD/MCI diagnosis and prognosis.

To tackle this problem, we exploit a deep learning

framework, which has been efficiently used to discover

visual features in computer vision (Hinton and Sala-

khutdinov 2006; Bengio et al. 2007; Lee et al. 2011; Yu

et al. 2011). The main concept of the deep learning is that

deep architectures can be much more efficient than shallow

architectures in terms of computational elements and

parameters required to represent unknown functions

(Bengio et al. 2007). Furthermore, one of the key features

of the deep learning is that the low-layer represents low-

level features and the high-layer abstracts those low-level

features. In the case of our neuroimaging and biological

data, the deep or hierarchical architecture can be efficiently

used to discover latent or hidden representation, inherent in

the low-level features from modalities, and ultimately to

enhance classification accuracy. Specifically, ‘stacked

auto-encoder’ (SAE) is considered to discover latent rep-

resentations from the original neuroimaging and biological

features. It is also noteworthy that thanks to the unsuper-

vised characteristic of the pre-training in deep learning, the

SAE model allows us to benefit from the target-unrelated

samples to discover general latent feature representations,

and hence to leverage for further enhancement of the

classification accuracy.

The main contributions of our work can be summarized

as follows: (1) To our best knowledge, this is the first work

that considers a deep learning for feature representation in

brain disease diagnosis and prognosis. (2) Unlike the pre-

vious work in the literature, we consider complicated non-

linear latent feature representation, which can be discov-

ered from data in self-taught learning. (3) By constructing

an augmented feature vector via a concatenation of the

original low-level features and the SAE-learned latent

feature representation, we can improve diagnostic accuracy

on the public ADNI dataset. (4) By means of pre-training

of SAE in an unsupervised manner with the target-unre-

lated samples and then fine-tuning with target-related

samples, the proposed method further enhances the clas-

sification performance.

Materials and image processing

Subjects

In this work, we use the ADNI dataset publicly available on

the web1. Specifically, we consider only the baseline MRI,

18-fluoro-deoxyglucose (FDG) PET, and CSF data

1 URL: http://www.loni.ucla.edu/ADNI.
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acquired from 51 AD patients, 99 MCI patients (43 MCI

converters, who progressed to AD, and 56 MCI non-con-

verters, who did not progress to AD in 18 months), and 52

HC subjects2. The demographics of the subjects are

detailed in Table 1. Along with the neuroimaging and

biological data, two types of clinical scores, mini-mental

state examination (MMSE) and Alzheimer’s disease

assessment scale-cognitive subscale (ADAS-Cog), are also

provided for each subject.

With regard to the general eligibility criteria in ADNI,

subjects were in the age of between 55 and 90 with a study

partner, who could provide an independent evaluation of

functioning. General inclusion/exclusion criteria3 are as

follows: (1) healthy subjects: MMSE scores between 24 and

30 (inclusive), a clinical dementia rating (CDR) of 0, non-

depressed, non-MCI, and non-demented; (2) MCI subjects:

MMSE scores between 24 and 30 (inclusive), a memory

complaint, objective memory loss measured by education

adjusted scores on Wechsler memory scale logical memory

II, a CDR of 0.5, absence of significant levels of impairment

in other cognitive domains, essentially preserved activities

of daily living, and an absence of dementia; and (3) mild AD:

MMSE scores between 20 and 26 (inclusive), CDR of 0.5 or

1.0, and meets the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s

Disease and Related Disorders Association (NINCDS/AD-

RDA) criteria for probable AD.

MRI and PET scanning

The structural MR images were acquired from 1.5 T

scanners. We downloaded data in Neuroimaging

Informatics Technology Initiative (NIfTI) format, which

had been pre-processed for spatial distortion correction

caused by gradient nonlinearity and B1 field inhomoge-

neity. The FDG-PET images were acquired 30–60 min

post-injection, averaged, spatially aligned, interpolated to a

standard voxel size, normalized in intensity, and smoothed

to a common resolution of 8 mm full width at half maxi-

mum. CSF data were collected in the morning after an

overnight fast using a 20- or 24-gauge spinal needle, frozen

within 1 h of collection, and transported on dry ice to the

ADNI Biomarker Core Laboratory at the University of

Pennsylvania Medical Center.

Image processing and feature extraction

The MR images were preprocessed by applying the typical

procedures of anterior commissure (AC)–posterior com-

missure (PC) correction, skull-stripping, and cerebellum

removal. Specifically, we used MIPAV software4 for

AC-PC correction, resampled images to 256 9 256 9 256,

and applied N3 algorithm (Sled et al. 1998) to correct

intensity inhomogeneity. An accurate and robust skull

stripping (Wang et al. 2011) was performed, followed by

cerebellum removal. We further manually reviewed the

skull-stripped images to ensure clean and dura removal.

Then, FAST in FSL package5 (Zhang et al. 2001) was used

for structural MR image segmentation into three tissue

types of gray matter (GM), white matter (WM) and cere-

brospinal fluid (CSF). We finally pacellated them into 93

regions of interests (ROIs) by warping Kabani et al.’s

(1998) atlas to each subject’s space via HAMMER (Shen

and Davatzikos 2002), although other advanced registration

methods can also be applied for this process (Friston et al.

1995; Evans and Collins 1997; Rueckert et al. 1999; Shen

et al. 1999; Wu et al. 2006; Xue et al. 2006a, b; Avants et al.

2008; Yang et al. 2008; Tang et al. 2009; Vercauteren et al.

2009; Jia et al. 2010). In this work, we only considered GM

for classification, because of its relatively high relatedness

to AD/MCI compared to WM and CSF (Liu et al. 2012).

Regarding FDG-PET images, they were rigidly aligned

to the respective MR images, and then applied parcellation

propagated from the atlas by registration. For each ROI, we

used the GM tissue volume from MRI, and the mean

intensity from FDG-PET as features6, which are most

widely used in the field for AD/MCI diagnosis (Davatzikos

et al. 2011; Hinrichs et al. 2011; Zhang and Shen 2012;

2 Although there exist in total more than 800 subjects in ADNI

database, only 202 subjects have the baseline data including all the

modalities of MRI, FDG-PET, and CSF.

Table 1 Demographic and clinical information of the subjects

AD

(N = 51)

MCI

converter

(N = 43)

MCI non-

converter

(N = 56)

HC

(N = 52)

Female/male 18/33 15/28 17/39 18/34

Age

(mean ± SD)

75.2 ± 7.4

[59–88]

75.7 ± 6.9

[58–88]

75.0 ± 7.1

[55–89]

75.3 ± 5.2

[62–85]

Education

(mean ± SD)

14.7 ± 3.6

[4–20]

15.4 ± 2.7

[10–20]

14.9 ± 3.3

[8–20]

15.8 ± 3.2

[8–20]

MMSE

(mean ± SD)

23.8 ± 2.0

[20–26]

26.9 ± 2.7

[20–30]

27.0 ± 3.2

[18–30]

29 ± 1.2

[25–30]

CDR

(mean ± SD)

0.7 ± 0.3

[0.5–1]

0.5 ± 0

[0.5–0.5]

0.5 ± 0

[0.5–0.5]

0 ± 0

[0–0]

N number of subjects, SD standard deviation, [min–max]

3 Refer to http://www.adniinfo.org for the details.

4 URL: http://mipav.cit.nih.gov/clickwrap.php.
5 URL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
6 While the low-level simple features should be the voxels in MRI

and FDG-PET, due to high dimensionality and a small sample

problem, in this paper, we take a ROI-based approach and consider

the conical GM tissue volumes and the mean intensity for each ROI

from MRI and FDG-PET, respectively, as the low-level features.
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Liu et al. 2013). Therefore, we have 93 features from a MR

image and the same dimensional features from FDG-PET

image. Here, we should note that although it is known that

the regions of medial temporal and superior parietal lobes

are mainly affected by the disease, we assume that other

brain regions, although their relatedness to AD is not

clearly investigated yet, may also contribute to the diag-

nosis of AD/MCI and thus we consider 93 ROIs in our

study. In addition, we have three CSF biomarkers of Ab42,

t-tau, and p-tau as features.

Stacked auto-encoder for latent feature representation

In this section, we describe the proposed method for AD/

MCI classification. Figure 1 illustrates a schematic dia-

gram of the proposed method. Given multi-modal data

along with the class-label and clinical scores, we first

extract low-level features from MRI and FDG-PET as

explained in ‘‘Image processing and feature extraction’’.

We then discover a latent feature representation from the

low-level features in MRI, FDG-PET, and CSF, individu-

ally, by deep learning with SAE. In deep learning, we

perform two steps sequentially: (1) We first pre-train the

SAE in a greedy layer-wise manner to obtain good initial

parameters. (2) We then fine-tune the deep network to find

the optimal parameters. A sparse learning on the aug-

mented feature vectors, i.e., a concatenation of the original

low-level features and the SAE-learned features, is applied

to select features that efficiently regress the target values,

e.g., class-label and/or clinical scores. Finally, we fuse the

selected multi-modal feature information via a multi-kernel

SVM (MK-SVM) for diagnosis. Note that the latent feature

representation and feature selection are performed for each

modality individually. Hereafter, we do not explicitly

indicate the modality of samples, unless specified, in order

for simplicity. Basically, the method described below can

be applied for each modality individually, but also appli-

cable to the concatenated feature vectors of three modali-

ties in terms of information fusion, which is considered

later in our experiments for comparison.

Sparse auto-encoder

An auto-encoder, also called as auto-associator, is one type

of artificial neural networks structurally defined by three

layers: input layer, hidden layer, and output layer. The

input layer is fully connected to the hidden layer, which is

further fully connected to the output layer as illustrated in

Fig. 2. The aim of the auto-encoder is to learn a latent or

compressed representation of the input, by minimizing the

reconstruction error between the input and the recon-

structed one from the learned representation.

Let DH and DI denote, respectively, the number of

hidden and input units in a neural network. Given a set of

training samples X ¼ fxi 2 R
DIgN

i¼1 from N subjects, an

auto-encoder maps xi to a latent representation yi 2 R
DH

through a linear deterministic mapping and a nonlinear

activation function f as follows:

yi ¼ f ðW1xi þ b1Þ ð1Þ

where W1 2 R
DH�DI is an encoding weight matrix and

b1 2 R
DH is a bias vector. Regarding the activation

function, in this study, we consider a logistic sigmoid

function for f ðaÞ ¼ 1= 1þ expð�aÞð Þ; which is the most

widely used in the field of pattern recognition or machine

learning (Bengio et al. 2007; Lee et al. 2008; Bengio 2009;

Larochelle et al. 2009; Ngiam et al. 2011; Shin et al.

2013). The representation yi of the hidden layer is then

mapped to a vector zi 2 R
DI ; which approximately

reconstructs the input vector xi by another linear mapping

as follows:

zi ¼ W2yi þ b2 � xi ð2Þ

where W2 2 R
DI�DH and b2 2 R

DI are a decoding weight

matrix and a bias vector, respectively.

Feature 
extraction

Feature 
extraction

MRI

Sparse representation learning

Label 
prediction 

Clinical scores 
regression

Label

Deep learning  
with stacked auto-encoder

Pre-training Fine-tuning

PET CSF MMSE 
ADAS-Cog

Template

AD/MCI diagnosis

Multi-kernel SVM learning

MRI  
kernel 

CSF 
kernel 

PET 
kernel 

Latent feature  
representation

Feature  
selection

Multi-modality 
fusion

Fig. 1 An illustration of the proposed method for AD/MCI diagnosis

Input layer

Hidden layer

Output layer

x

y

z

W1

W2

Encoding

Decoding

Fig. 2 Illustration of an auto-encoder and its parameters. (The bias

parameters b1 and b2 are omitted for clarity.)
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Structurally, the number of input and output units are

fixed to the dimension of an input vector. Meanwhile, the

number of hidden units can be determined based on the

nature of the data. If the number of hidden units is less than

the dimension of the input data, then the auto-encoder can

be used for dimensionality reduction. However, it is note-

worthy that in order for obtaining complicated non-linear

relations among neuroimaging features, we can allow the

number of hidden units to be even larger than the input

dimension, from which we can still find an interesting

structure by imposing a sparsity constraint (Lee et al. 2008;

Larochelle et al. 2009).

From a learning perspective, we aim to minimize the

reconstruction error between the input xi and the output zi

with respect to the parameters. Let Z ¼ zif gN
i¼1 and

lðX;ZÞ ¼ 1
2

PN
i¼1 xi � zik k2

2 denote a reconstruction error.

In order for the sparseness of the hidden units, we further

consider a Kullback-Leibler (KL) divergence between the

average activation q̂j of the jth hidden unit over the training

samples and the target average activation q defined as

follows (Shin et al. 2013):

KLðqjjq̂jÞ ¼ qlog
q
q̂j

þ ð1� qÞlog
1� q
1� q̂j

ð3Þ

where q and q̂j are Bernoulli random variables. Then our

objective function can be written as follows:

lðX;ZÞ þ c
XDH

j¼1

KLðqjjq̂jÞ: ð4Þ

With the introduction of the KL divergence weighted by a

sparsity control parameter c to the target objective func-

tion, we penalize a large average activation of a hidden unit

over the training samples by setting q small7. This penal-

ization drives many of the hidden units’ activation to be

equal or close to zero, resulting in sparse connections

between layers.

Note that the output from the hidden layer determines

the latent representation of the input vector. However, due

to its simple shallow structural characteristic, the repre-

sentational power of a single-layer auto-encoder is known

to be very limited.

Stacked auto-encoder

Inspired from the biological model of the human visual

cortex (Fukushima 1980; Serre et al. 2005), recent studies

in machine learning have shown that a deep or hierarchical

architecture is useful to find highly non-linear and complex

patterns in data (Bengio 2009). Motivated by the studies, in

this paper, we consider a SAE (Bengio et al. 2007), in

which an auto-encoder becomes a building block, for a

latent feature representation in neuroimaging or biological

data. Specifically, as the name says, we stack auto-encoders

one after another taking the outputs from the hidden units

of the lower layer as the input to the upper layer’s input

units, and so on. Figure 3 shows an example of a SAE

model with three auto-encoders stacked hierarchically.

Note that the number of units in the input layer is equal to

the dimension of the input feature vector. But the number

of hidden units in the upper layers can be determined

according to the nature of the input, i.e., even larger than

the input dimension.

Thanks to the hierarchical nature in structure, one of the

most important characteristics of the SAE is to learn or

discover highly non-linear and complicated patterns such

as the relations among input features. Another important

characteristic of the deep learning is that the latent repre-

sentation can be learned directly from the data. Utilizing its

representational and self-taught learning properties, we can

find a latent representation of the original low-level fea-

tures directly extracted from neuroimaging or biological

data. When an input sample is presented to a SAE model,

the different layers of the network represent different levels

of information. That is, the lower the layer in the network,

the simpler patterns (e.g., linear relations of features); the

higher the layer, the more complicated or abstract patterns

inherent in the input feature vector (e.g., non-linear rela-

tions among features).

With regard to training parameters of the weight

matrices and the biases in the deep network of our SAE

model, a straightforward way is to apply back-propagation

with the gradient-based optimization technique starting

from random initialization taking the deep network as a

conventional multi-layer neural network. Unfortunately, it

is generally known that deep networks trained in that

manner perform worse than networks with a shallow

architecture, suffering from falling into a poor local opti-

mum (Larochelle et al. 2009). However, recently, Hinton

et al. introduced a greedy layer-wise unsupervised learning

algorithm and showed its success to learn a deep belief

network (Hinton et al. 2006). The key idea in a greedy

layer-wise learning is to train one layer at a time by

maximizing the variational lower bound (Hinton et al.

2006). That is, we first train the first hidden layer with the

training data as input, and then train the second hidden

layer with the outputs from the first hidden layer as input,

and so on. That is, the representation of the lth hidden layer

is used as input for the (l ? 1)-th hidden layer. This greedy

layer-wise learning is called ‘pre-training’ (Fig. 3a–c). The

pre-training is performed in an unsupervised manner with a

standard back-propagation algorithm (Bishop 1995). Later

in our experiments, we utilize this unsupervised charac-

teristic in pre-training to further find optimal parameters to7 In this work, we set c = 0.01 and q = 0.05.
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discover a latent representation in the neuroimaging or

biological data, taking benefits from target-unrelated

samples.

Focusing on the ultimate goal of our work to improve

diagnostic performance in AD/MCI identification, we fur-

ther optimize the deep network in a supervised manner. In

order for that, we stack another output layer on top of the

SAE (Fig. 3d). This top output layer is used to represent the

class-label of an input sample. We set the number of units in

the output layer to be equal to the number of classes of

interest. This extended network can be considered as a

multi-layer neural network and, in this paper, we call it

‘SAE-classifier’. Therefore, it is straightforward to optimize

the deep network by back-propagation with gradient des-

cent, having parameters, except for the last classification

network, initialized by the pre-trained ones. Note that the

initialization of the parameters via pre-training makes the

deep network different from the conventional neural net-

work, and it helps the supervised optimization, called ‘fine-

tuning’, reduce the risk of falling into local poor optima

(Hinton et al. 2006; Larochelle et al. 2009). We summarize

the deep learning of the SAE in Algorithm 1. Besides the

fine-tuning of the parameters, we also utilize the

SAE-classifier to determine the optimal SAE structure.

Later in our experiments, we consider the following two

learning schemes, in which the main difference lies in the

way of utilizing the training samples available: (1) The

supervised approach learns the parameters of SAE from

solely the target-related training samples. For example, in

the task of classifying MCI converter (MCI-C) and MCI

non-converter (MCI-NC), we use the target-related training

samples of MCI-C and MCI-NC for both pre-training and

fine-tuning in deep learning, and for the SVM classifier

learning (Fig. 4a). (2) The semi-supervised approach first

performs pre-training using both target-related and target-

unrelated samples, and then fine-tune the model with only

the target-related samples. For example, in the task of

discriminating MCI-C from MCI-NC, we first perform pre-

training with the samples of AD and HC as well as those of

MCI-C and MCI-NC, and then fine-tuning with only the

MCI-C and MCI-NC training samples (Fig. 4b). Finally,

the representation of the target-related MCI-C and

3rd hidden layer

2nd hidden layer

1st hidden layer

Input layer

(a)

(c) (d)

-1

Stacked  
auto-encoder

Classification  
network  

(b)

Fig. 3 A deep architecture of

our stacked auto-encoder and

the two-step (unsupervised

greedy layer-wise pretraining

and supervised fine-tuning)

parameter optimization scheme.

(The black arrows denote the

parameters to be optimized in

the current stage). a Pre-training

of the first hidden layer with the

training samples as inputs, b
pre-training of the second

hidden layer with the outputs

from the first hidden layer as

inputs, c pre-training of the third

hidden layer with the output

from the second hidden layer as

inputs, d fine-tuning of the

whole network with an

additional label-output layer,

taking the pre-trained

parameters as the starting point

in optimization
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MCI-NC training samples are used for SVM learning. The

motivation of applying this learning scheme in our work is

that the more samples we use in pre-training of the deep

architecture, the better good initialization of the parameters

we can obtain, and thus the better latent representation

inherent in the low-level features we can discover (Laro-

chelle et al. 2009). Hereafter, we use the terms of ‘super-

vised’ and ‘semi-supervised’, respectively, to specify the

strategy of learning parameters of a SAE model as

described above throughout the paper.

Once we determine the structure of a SAE model, we

consider the outputs from the top hidden layer as our latent

feature representation, i.e., YH ¼ f ŴH
1 YH�1 þ b̂H

1

� �
2

R
DH�N ; where ŴH

1 and b̂H
1 denote, respectively, the trained

weight matrix and bias of the top Hth hidden layer, and

YH-1 is the outputs from the (H-1)-th hidden layer. To

utilize both the low-level simple features and the high-level

latent representation, we construct an augmented feature

vector X̂ by concatenating the SAE-learned feature

representation YH with the original low-level features

X, i.e., X̂ ¼ XT;YT
H

� �
2 R

N�ðDIþDHÞ, which is then fed into

the sparse learning for feature selection as described below.

Feature selection with sparse representation learning

Earlier, Zhang and Shen showed the efficacy of sparse

representation for feature selection in AD/MCI diagnosis

(Zhang and Shen 2012). Here, we consider two sparse

representation methods, namely, least absolute shrinkage

and selection operator (lasso) (Tibshirani 1996) and group

lasso (Yuan and Lin 2006), which penalize a linear

regression model with l1-norm and l21-norm, respectively.

In this work, we select features for each modality indi-

vidually and defer the multi-modal information fusion to

MK-SVM learning. The rationale for the modality-specific

feature selection is that we believe it would be helpful to

find the discriminative features in a low dimension

rather than in a high dimension of the modality-concate-

nated feature vectors.

MCI-C
MCI-NC

Pre-training and fine-tuning

SVM learning

AD MCI-C
HCMCI-NC

Pre-training

MCI-C
MCI-NC

Fine-tuning

SVM learning

(a) (b)

Fig. 4 An example of SAE model training schemes for MCI

converter (MCI-C) and MCI non-converter (MCI-NC) classification.

The colored-boxes denote the samples used for training during the

specified step. The size of a rectangle represents the number of

training samples available for each class
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Let m 2 f1; . . .;Mg denote an index of modalities and

X̂ðmÞ 2 R
N�D denote a set of the augmented feature vectors,

where N and D(= DH ? DI) are, respectively, the number

of samples and the dimension of the augmented feature

vector. In lasso, we focus on finding optimal weight

coefficients a(m) to regress the target response vector

tðmÞ 2 R
N by a combination of the features in X̂ðmÞ with a

sparsity constraint as follows:

J aðmÞ
� �

¼ min
aðmÞ

1

2
tðmÞ � X̂

ðmÞ
aðmÞ

�
�
�

�
�
�

2

2
þk1 aðmÞ

�
�

�
�

1
ð5Þ

where k1 is a sparsity control parameter. In our work, the

target response vector corresponds to the target clinical

labels. The l1-norm penalty to linear regression imposes

sparsity to the solution of a(m), which means that many of

the elements are to be zero. By the application of the lasso,

we can select features whose weight coefficients are non-

zero.

Meanwhile, unlike the lasso that considers a single tar-

get response vector, the group lasso can accommodate

multiple target response vectors, where each target

response vector can be regarded as one task, and impose a

constraint that encourages the correlated features to be

jointly selected for multiple tasks in a data-driven manner.

J AðmÞ
� �

¼ min
AðmÞ

1

2

XS

s¼1

tðmÞs � X̂
ðmÞ

aðmÞs

�
�
�

�
�
�

2

2
þk2 AðmÞ

�
�

�
�

2;1
ð6Þ

where s 2 f1; . . .; Sg denotes an index of tasks8, AðmÞ ¼
a
ðmÞ
1 � � � a

ðmÞ
s � � � aðmÞS

h i
; and k2 is a group-sparsity control

parameter. In Eq. 6, AðmÞ
�
�

�
�

2;1
¼
PD

d¼1 kAðmÞ½d; :�k2; where

A(m)[d, :] denotes the dth row of the matrix A(m). This l2,1-

norm imposes to select features that are jointly used to

represent the target response vector {ts
(m)}s=1

S across tasks9.

We can select features whose absolute weight coefficient is

larger than zero.

From the inspection of Eqs. 5 and 6, we can see that the

group lasso is a generalized form of the lasso in terms of

the number of tasks involved in regression. That is, if we

have information for a single task, then the group lasso

becomes the conventional lasso. Later in our experiments,

we consider both of these sparse representation learning

and observe their effects on selecting features as well as

classification performance. We use a set of class-labels in

lasso, and clinical scores as well as class-labels in group

lasso. The hyper-parameters of k1 and k2 in Eqs. 5 and 6,

respectively, are determined by a grid search within a space

of [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3]. For the opti-

mization, we use a SLEP toolbox10.

Multi-kernel SVM learning

It is witnessed in the previous studies that the biomarkers

from different modalities can provide complementary

information in AD/MCI diagnosis (Perrin et al. 2009). In

this paper, we combine the complementary information

from modalities of MRI, FDG-PET, and CSF in the feature

kernel space with linear SVM, which has proved its effi-

cacy in many fields (Wee et al. 2012; Han and Davis 2012;

Suk and Lee 2013). Given the dimension-reduced training

samples ~XðmÞ ¼ f~xðmÞi g
N
i¼1 through the sparse representation

learning as described in ‘‘Feature selection with sparse

representation learning’’, and the test sample of ~xðmÞ; where

m 2 f1; . . .;Mg denotes an index of modalities, the deci-

sion function of the MK-SVM is defined as follows:

f ~xð1Þ; . . .; ~xðMÞ
� �

¼ sign
XN

i¼1

fiai

XM

m¼1

bðmÞkðmÞ ~x
ðmÞ
i ; ~xðmÞ

� �
þ b

( )

ð7Þ

where fi is the class-label of the ith sample, ai and b are,

respectively, a Lagrangian multiplier and a bias,

kðmÞ ~x
ðmÞ
i ; ~xðmÞ

� �
¼ /ðmÞ ~x

ðmÞ
i

� �n oT

/ðmÞ ~xðmÞ
� �n o

is a ker-

nel function, /(m) is a kernel-induced mapping function,

and b(m) C 0 is a weight coefficient of the mth modality

with the constraint of
PM

m¼1 bðmÞ ¼ 1. Refer to Gönen

(2011) for a detailed explanation on the MK-SVM.

Experimental results

Experimental setup

In this section, we evaluate the effectiveness of the pro-

posed method for a non-linear latent feature representation

by deep learning with SAE, considering four binary clas-

sification problems: AD vs. HC, MCI vs. HC, AD vs. MCI,

and MCI-C vs. MCI-NC. In the classifications of MCI vs.

HC, and AD vs. MCI, both MCI-C and MCI-NC data were

used as the MCI class. For each classification problem, we

applied a tenfold cross validation technique. That is, we

randomly partitioned the dataset into 10 subsets, each of

which included 10 % of the total dataset, and then used 9

out of 10 subsets for training and the remaining one for

testing. We repeated these whole process 10 times for

unbiased evaluation.

8 In our case, the tasks are to regress class-label, and MMSE and A-

DAS-Cog scores.
9 In this work, tð1Þs ¼ � � � ¼ tðmÞs ¼ � � � ¼ tðMÞs :

10 URL: http://www.public.asu.edu/*jye02/Software/SLEP/index.

htm.
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To show the validity of the proposed method of com-

bining SAE-learned feature representation with the original

low-level features, we compared the results of the proposed

method with those from the original low-level features and

SAE-learned feature representation, respectively, by

applying the same strategies of feature selection and MK-

SVM learning. Hereafter, we denote LLF, SAEF, and

LLF ? SAEF, respectively, for the cases of using the

original low-level features, SAE-learned features, and the

concatenation of LLF and SAEF. It is noteworthy that we

use the same training and test samples over the competing

methods for fair comparison.

Determination of the structure of a SAE model

With regard to the structure of a SAE model, we consid-

ered three hidden layers for MRI, FDG-PET, and CON-

CAT11, and two hidden layers for CSF, by taking into

account the dimensionality of the low-level features in each

modality. To determine the number of hidden units, we

performed classification with a SAE-classifier by a grid

search12. Due to the possibility of over-fitting with a small

number of training samples, we early stopped the fine-

tuning step by setting a small number for iteration. The

optimal structure of the SAE models and the respective

performance are presented in Table 2. For example, in

classification of AD and HC, we obtained the best accuracy

of 85.7 % with MRI from a SAE-classifier of 500-50-10

(from bottom to top) hidden units in supervised learning13.

We used a DeepLearnToolbox14 to train our SAE model.

Classification results

Regarding the feature selection, we observed that the lasso-

based method showed better classification performance

compared to the group lasso-based one. Here, we present

the classification results obtained by lasso-based feature

selection method.

Table 3 shows the mean accuracies of the competing

methods in the classification of AD and HC. Although the

proposed method of LLF ? SAEF with a single-modality

was outperformed for a couple of cases by the LLF-based

one, e.g., 89 % (LLF) vs. 88.2 % (LLF ? SAEF) with

MRI, 93.7 % (LLF) vs. 93.5 % (LLF ? SAEF) with

CONCAT, those from multi-modality fusion via MK-SVM

showed the best accuracies of 97.9 and 98.8 % in

Table 2 Classification

accuracies (mean ± standard

deviation) obtained from SAE-

classifiers and their

corresponding structures in

terms of the number of hidden

units

Refer to Fig. 4a, b, and the

contexts for explanation of

‘supervised’ and ‘semi-

supervised’

Supervised Semi-supervised

# Hidden units Accuracy # Hidden units Accuracy

AD vs. HC

MRI 500-50-10 0.857 ± 0.018 300-50-20 0.844 ± 0.025

PET 1,000-50-30 0.859 ± 0.021 100-50-10 0.834 ± 0.020

CSF 50-3 0.831 ± 0.016 10-3 0.757 ± 0.048

CONCAT 500-100-20 0.899 ± 0.014 1,000-100-10 0.888 ± 0.009

MCI vs. HC

MRI 100-100-20 0.706 ± 0.021 500-50-20 0.697 ± 0.032

PET 300-50-10 0.670 ± 0.018 500-50-20 0.673 ± 0.021

CSF 10-3 0.683 ± 0.020 10-2 0.664 ± 0.021

CONCAT 100-50-20 0.737 ± 0.025 100-50-20 0.752 ± 0.025

AD vs. MCI

MRI 1,000-50-30 0.645 ± 0.024 1,000-50-10 0.655 ± 0.027

PET 100-50-10 0.659 ± 0.017 500-50-10 0.655 ± 0.026

CSF 10-1 0.661 ± 0.009 10-1 0.660 ± 0.013

CONCAT 100-100-20 0.689 ± 0.023 1,000-100-20 0.672 ± 0.025

MCI-C vs. MCI-NC

MRI 100-100-10 0.549 ± 0.037 300-100-30 0.571 ± 0.036

PET 100-100-10 0.595 ± 0.044 100-50-30 0.581 ± 0.045

CSF 30-2 0.589 ± 0.026 30-1 0.562 ± 0.020

CONCAT 500-50-20 0.602 ± 0.031 300-100-30 0.613 ± 0.042

11 CONCAT represents a concatenation of the features from MRI,

FDG-PET, and CSF into a single vector, which is the most direct and

intuitive way of combining multimodal information.
12 We considered [100, 300, 500, 1,000]–[50, 100]–[10, 20, 30] and

[10, 20, 30]–[1, 2, 3] (bottom–top) for three-layer and two-layer

networks, respectively.

13 Refer to ‘‘Sparse auto-encoder’’ for explanation of the supervised

learning.
14 URL: https://github.com/rasmusbergpalm/DeepLearnToolbox.
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supervised and semi-supervised learning, respectively.

Compared to the accuracy of 97 % with a LLF-based

method, the proposed method improved the accuracy by

0.9 and 1.8 %, in supervised and semi-supervised learning,

respectively.

In the classification of MCI and HC, as presented in

Table 4, the proposed method showed the best classifica-

tion accuracies of 88.8 and 90.7 % with supervised and

semi-supervised learning schemes, respectively. The per-

formance improvements compared to the classification

accuracy of 84.8 % with the LLF-based method were 4 and

5.9 %, respectively.

In the classification of AD and MCI, as shown in

Table 5, the proposed method showed the best classifica-

tion accuracies of 82.7 and 83.7 % with supervised and

semi-supervised learning schemes, respectively. We could

enhance the classification accuracy by 3.9 and 4.9 % with

supervised and semi-supervised learning schemes, respec-

tively, compared to the LLF-based method, whose accu-

racy was 78.8 %.

In discriminating MCI-C from MCI-NC, the proposed

method also outperformed the LLF-based method as pre-

sented in Table 6. While the LLF-based method showed

the classification accuracy of 76 % with multi-modality

fusion via MK-SVM, we could obtain the classification

accuracies of 77.9 and 83.3 % in supervised and semi-

supervised learning, respectively. It is remarkable that the

semi-supervised learning scheme enhanced the perfor-

mance by 7.3 % compared to that of the LLF-based

method.

We also plotted the best performances of the competing

methods, regardless of the model training schemes, for four

binary classification problems with their sensitivity and

specificity given in Fig. 5. From the figure, we can clearly

see that the proposed method outperforms the competing

methods. It is noteworthy that there is a tendency of the

improvement increase in the order of AD vs. HC, AD vs.

MCI, MCI vs. HC, and MCI-C vs. MCI-NC. That is, we

made higher improvements in the more challengeable and

important tasks, e.g., classifying between MCI-C and MCI-

NC, for early diagnosis and treatment.

Discussions

Deep learning-based latent feature representation

In our method of discovering a latent feature representa-

tion, we built a SAE-classifier for a means of determining

the optimal SAE-structure. It is worth noting that, across

Table 3 Performance

comparison of different feature

sets with lasso-based feature

selection in AD vs. HC

classification

Bold best performance across

both the feature types and the

learning schemes, italics best

performance across the feature

types in the same learning

scheme

AD vs. HC

LLF SAEF LLF ? SAEF

Supervised

MRI 0.890 ± 0.018 0.821 ± 0.026 0.882 ± 0.019

PET 0.848 ± 0.026 0.832 ± 0.020 0.850 ± 0.018

CSF 0.797 ± 0.014 0.802 ± 0.017 0.801 ± 0.018

CONCAT 0.937 ± 0.013 0.835 ± 0.018 0.935 ± 0.012

MK-SVM 0.970 ± 0.010 0.947 ± 0.018 0.979 ± 0.007

Semi-supervised

MRI – 0.838 ± 0.028 0.924 ± 0.015

PET – 0.827 ± 0.023 0.887 ± 0.027

CSF – 0.785 ± 0.033 0.797 ± 0.014

CONCAT – 0.889 ± 0.018 0.960 ± 0.014

MK-SVM – 0.945 ± 0.017 0.988 – 0.004

Table 4 Performance comparison of different feature sets with lasso-

based feature selection in MCI vs. HC classification

MCI vs. HC

LLF SAEF LLF ? SAEF

Supervised

MRI 0.736 ± 0.013 0.674 ± 0.020 0.802 ± 0.016

PET 0.683 ± 0.016 0.672 ± 0.027 0.745 ± 0.018

CSF 0.678 ± 0.020 0.662 ± 0.023 0.679 ± 0.022

CONCAT 0.756 ± 0.022 0.726 ± 0.031 0.836 ± 0.005

MK-SVM 0.848 ± 0.014 0.799 ± 0.024 0.888 ± 0.012

Semi-supervised

MRI – 0.709 ± 0.022 0.794 ± 0.019

PET – 0.682 ± 0.021 0.749 ± 0.025

CSF – 0.664 ± 0.019 0.682 ± 0.013

CONCAT – 0.724 ± 0.033 0.833 ± 0.020

MK-SVM – 0.808 ± 0.017 0.907 – 0.012

Bold best performance across both the feature types and the learning

schemes, italics best performance across the feature types in the same

learning scheme
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classification tasks, different numbers of hidden units for

the same modality were determined, e.g., 500-50-10 in AD

vs. HC, 100-100-20 in MCI vs. HC, 1000-50-30 in AD vs.

MCI, and 100-100-10 in MCI-C vs. MCI-NC for MRI in

supervised learning. We believe that this reflects the

necessity of considering different high-level non-linear

relations inherent in LLF for different classification

problems.

In terms of the model architecture, the SAE-classifier

can be considered as a simple logistic regression model

taking the SAE-learned feature representation as input.

Despite the simple architecture, it presented classification

accuracies higher than or comparable to those from the

SVM classifier, into which SAE-learned features were fed

after feature selection. This is resulted from the fact that the

SAE-learned features were optimized to the SAE-classifier,

not to the SVM classifier.

In the meantime, when we constructed an augmented

feature vector via a concatenation of LLF and SAEF, we

could greatly improve the accuracies. That is, the original

low-level features are still informative for brain disease

diagnosis along with the latent feature representations.

In comparison with the LLF-based method, the proposed

method of LLF ? SAEF, greatly improved the diagnostic

accuracy over all the classification problems considered in

this work. Specifically, the proposed method consistently

outperformed the competing methods over uni-modality

and multi-modality with semi-supervised learning.

In deep learning, it is an important issue for the size of

training samples. While there is a limited number of

samples available in ADNI dataset, we would like to note

that under the circumstance of a small sample size, there is

an empirical proof that the unsupervised pre-training helps

deep learning find better optimal parameters for reducing

errors (Erhan et al. 2010). In the same perspective, we

could also obtain the best performances in four binary

classification problems from the semi-supervised learning,

which means that we could benefit from the target-unre-

lated samples for pre-training and learning the optimal

parameters for the deep network, and hence enhance the

classification accuracy. This is one of the most prominent

and important characteristics of deep learning in SAE,

compared to the conventional neural network. In the con-

ventional neural network, we find the optimal parameters

starting from random initialization in a supervised manner,

which means that we can only use limited number of tar-

get-related samples in learning. Therefore, it is restricted

for the application of neural networks with only a small

number of layers in structure. Meanwhile, the deep learn-

ing allows to utilize the unlabeled or target-unrelated

samples in learning. From a practical point of view, it is of

great importance to exploit information from unlabeled or

target-unrelated data, which we have much more available

in the reality.

It is also important for the interpretation of the trained

weights and the latent feature representations. We can

regard the trained weights as filters that can find different

types of relations among the inputs. For example, each

hidden unit in the first hidden layer captures a different

representation via the non-linear transformation of the

weighted linear combination of the input low-level

Table 5 Performance comparison of different feature sets with lasso-

based feature selection in AD vs. MCI classification

AD vs. MCI

LLF SAEF LLF ? SAEF

Supervised

MRI 0.617 ± 0.020 0.631 ± 0.023 0.704 ± 0.026

PET 0.667 ± 0.023 0.645 ± 0.015 0.711 ± 0.025

CSF 0.659 ± 0.004 0.661 ± 0.002 0.655 ± 0.009

CONCAT 0.693 ± 0.019 0.681 ± 0.023 0.752 ± 0.030

MK-SVM 0.788 ± 0.018 0.759 ± 0.019 0.827 ± 0.025

Semi-supervised

MRI – 0.659 ± 0.025 0.721 ± 0.039

PET – 0.640 ± 0.021 0.715 ± 0.024

CSF – 0.659 ± 0.002 0.659 ± 0.005

CONCAT – 0.682 ± 0.022 0.781 ± 0.028

MK-SVM – 0.757 ± 0.017 0.837 – 0.015

Bold best performance across both the feature types and the learning

schemes, italics best performance across the feature types in the same

learning scheme

Table 6 Performance comparison of different feature sets with lasso-

based feature selection in MCI converter (MCI-C) vs. MCI non-

converter (MCI-NC) classification

MCI-C vs. MCI-NC

LLF SAEF LLF ? SAEF

Supervised

MRI 0.541 ± 0.042 0.544 ± 0.026 0.561 ± 0.037

PET 0.573 ± 0.025 0.598 ± 0.048 0.611 ± 0.039

CSF 0.569 ± 0.017 0.581 ± 0.028 0.576 ± 0.032

CONCAT 0.597 ± 0.034 0.596 ± 0.030 0.713 ± 0.030

MK-SVM 0.760 ± 0.020 0.733 ± 0.035 0.779 ± 0.027

Semi-supervised

MRI – 0.559 ± 0.060 0.693 ± 0.020

PET – 0.573 ± 0.029 0.689 ± 0.038

CSF – 0.548 ± 0.024 0.577 ± 0.030

CONCAT – 0.596 ± 0.048 0.786 ± 0.032

MK-SVM – 0.737 ± 0.031 0.833 – 0.021

Bold best performance across both the feature types and the learning

schemes, italics best performance across the feature types in the same

learning scheme
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features. Note that each unit has a different weight set and

the weights of the input low-level features can be positive,

negative, or zero. That is, by assigning different weights to

each low-level feature, e.g., GM tissue volume from MRI

or mean intensity from FDG-PET, the model discovers

different latent relations among the low-level features from

hidden units. From a neuroscience perspective, the hidden

layer can discover the structural non-linear relations from

MRI features and the functional non-linear relations from

FDG-PET features. The outputs of the first hidden layer are

further combined in the upper hidden layer capturing even

more complicated relations. In this way, the SAE hierar-

chically captures latent complicated information inherent

in the input low-level features, which are helpful to classify

patients and healthy normal controls. Theoretically, to date,

there is no standard way to visualize or interpret the trained

weights in an intuitive way, but it still remains a chal-

lenging issue also in the field of pattern recognition or

machine learning. We would like to mention that while it is

not straightforward to interpret the meaning of the trained

weights or the latent feature representations, it is clear from

our experiments that the latent complicated information is

useful in AD/MCI diagnosis.

To further validate the effectiveness of the proposed

method, we also presented a statistical significance of the

results with paired t test in Table 7. The test was performed

with the results obtained from LLF and LLF ? SAEF with

MK-SVM. The lasso-based feature selection was consid-

ered for both methods, and, for LLF ? SAEF, the SAE

model was learned in a semi-supervised manner. The

proposed method statistically outperformed the LLF-based

method across all cases, except for CSF, rejecting the null

hypothesis beyond the 95 % of confidence level. We

believe that due to the low dimensionality of the original

features from CSF, the SAE-learned latent feature repre-

sentation was not much informative in classification.

Lasso vs. group lasso for feature selection

Here, we compare the performances with lasso- and group

lasso-based feature selection methods. In group lasso, we

considered the clinical labels and clinical scores of MMSE

and ADAS-cog as the target responses. In conclusion, we

observed that the method of lasso-based feature selection

outperformed that of group lasso-based one as presented in

Fig. 6. The reason for this result is that, we believe,

although the l21-norm-based multi-task learning can be

used to take the advantage of richer information, it focuses

on the target regression instead of the classification.

Therefore, it finds features that most accurately regress the

target values, i.e., clinical labels and clinical scores,

Fig. 5 Comparison of the best

performances of the competing

methods, regardless of the

learning schemes for a SAE

model

Table 7 Statistical significance (paired t test) between the classifi-

cation accuracies obtained from LLF and LLF ? SAEF, which used

supervised and semi-supervised learning schemes, respectively

AD vs.

HC

MCI vs.

HC

AD vs.

MCI

MCI-C vs.

MCI-NC

MRI 0.0014 4.18e-06 2.32e-06 2.67e-06

PET 0.0025 3.26e-05 2.51e-04 2.51e-06

CSF 0.8673 0.4031 0.9955 0.2357

CONCAT 0.0014 5.74e-07 2.53e-05 2.18e-06

MK-SVM 8.45e-04 5.78e-07 5.36e-05 9.28e-06

All 0.005 6.70e-16 2.80e-12 3.43e-11
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regardless of the discriminative power of the selected

features between classes. Moreover, the MMSE scores for

different groups were highly overlapped, which means it

provided mere information and might act as a potential

confounding in discriminative feature selection. Mean-

while, in l1-norm-based single-task learning, the clinical

labels, the prediction of which is our main goal, are used as

the target response. That is, the selected features to regress

the target clinical labels can be class-discriminative in

some sense. However, we should note that the multi-task

learning is a generalized form of the single-task sparse

learning. Therefore, if there exists other class-related

information, we should utilize the information in the

framework of multi-task learning and it should thus pro-

duce better performance.

Comparison with the state-of-the-art method

We also compared the performance of the proposed

method with that of the multi-task multi-modal learning

(M3T) method (Zhang and Shen 2012), which first per-

forms multi-task learning, i.e., group lasso, on LLF for

feature selection and then fuses multi-modal information

via MK-SVM. For fair comparison, we used the same

training and test samples for M3T. Compared to the

accuracies of M3T, which were 94.5 ± 0.8, 84 ± 1.1,

78.8 ± 1.8, and 71.8 ± 2.6 % for AD vs. HC, MCI vs.

HC, AD vs. MCI, and MCI-C vs. MCI-NC classification,

respectively, the proposed method with LLF ? SAEF

made a performance improvement of 3.4, 4.8, 3.9, and

6.1 % using a supervised learning scheme, and 4.3, 6.7,

4.9, and 11.5 % using a semi-supervised learning scheme,

both of which used a l1-norm based feature selection.

Selected region of interests

From Figs. 7, 8, 9 and 10, we can see that the SAE-learned

latent features did not show high frequency of being

selected for classification. However, based on the classifi-

cation accuracies and the fewer number of high frequency

ROIs in the graphs, we assume that the SAE-learned latent

features affected to filter out the original low-level features,

which were not discriminative in classification, during

feature selection. But, in classification of MCI vs. HC, a

larger number of ROIs were involved for discrimination in

the proposed method. Our understanding for this phe-

nomenon is that due to its subtlety of the involved cogni-

tive impairment in MCI compared to AD, we need to

consider a larger number of ROIs and also the relations

among them for more accurate diagnosis.

The selected ROIs included medial temporal lobe that

involves a system of anatomically related structures that

are vital for declarative or long-term memory: amygdala,

hippocampal formation, entorhinal cortex, hippocampal

region, and the perirhinal, entorhinal, and parahippocampal

cortices (Braak and Braak 1991; Visser et al. 2002; Mos-

coni 2005; Lee et al. 2006; Devanand et al. 2007; Burton

et al. 2009; Desikan et al. 2009; Ewers et al. 2012; Wal-

hovd et al. 2010), and also the regions of supramarginal

gyrus (Buckner et al. 2005; Desikan et al. 2009; Dickerson

et al. 2009; Schroeter et al. 2009), angular gyrus (Schroeter

et al. 2009; Nobili et al. 2013; Yao et al. 2012), superior

parietal lobule, precuneus, cuneus (Bokde et al. 2006;

Singh et al. 2006; Davatzikos et al. 2011), cingulate region

(Mosconi 2005), anterior limb of internal capsule (Zhang

et al. 2009), caudate nucleus (Dai et al. 2009), fornix

(Copenhaver et al. 2006).

Limitations of the current work

Although we could achieve performance enhancements in

four different classification problems, there exist some

limitations and disadvantages of the proposed method.

First, in PET imaging, it is known that the partial vol-

ume effect, caused by a combination of the limited reso-

lution of PET and image sampling, can lead to

underestimation or overestimation of regional concentra-

tions of radioactivity in the reconstructed images and fur-

ther errors in statistical parametric images (Aston et al.

2002). However, in this work, we did not apply a procedure

for partial volume correction. Therefore, there is a possi-

bility of resulting in mixed combination of multiple tissue

values in each voxel, reducing the differences between GM

and WM. On the other hand, since we are using the ROI-

based features for our classification, the performance of our

method is less affected by this partial volume effect.

Second, as for the computational complexity, once the

model was built by determining the network structure,

learning the model parameters, and selecting the features, it

took less than a minute to get the result for a given patient

in our system of Mac OSX with 3.2GHz Intel Core i5 and

16 GB of memory. However, as stated in ‘‘Deep learning-

based latent feature representation’’, to date, there is no

general or intuitive method for visualization of the trained

weights or for interpretation of the latent feature

Fig. 6 Comparison of the best performances between lasso- and

group lasso-based feature selection methods
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representations. The problem of efficient visualization or

interpretation of the latent feature representation is another

big challenge that should be tackled by the communities of

machine learning and clinical neuroscience, collabora-

tively. Furthermore, we used a relatively small data

samples (51 AD, 43 MCI-C, 56 MCI-NC, and 52 HC).

Therefore, the network structures used to discover latent

information in our experiments are not necessarily optimal

for other datasets. We believe that it needs more intensive

studies such as learning the optimal network structure from
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Fig. 8 Frequencies of the selected ROIs in MCI vs. HC classification. Blue and red bars correspond, respectively, to the original low-level

features and the SAE-learned feature representations
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Fig. 7 Frequencies of the selected ROIs in AD vs. HC classification. Blue and red bars correspond, respectively, to the original low-level

features and the SAE-learned feature representations
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big data for practical use of deep learning in clinical

settings.

Third, according to a recent broad spectrum of studies,

there are increasing evidences that subjective cognitive

complaints are one of the important genetic risk factors

increasing the risk of progression to MCI or AD (Loe-

wenstein et al. 2012; Mark and Sitskoorn 2013). That is,

among cognitively normal elderly individuals, who have

subjective cognitive impairments, there exists a high pos-

sibility for some of them to be in the stage of ‘pre-MCI’.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05
MRI (LLF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08
PET (LLF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

1 2 3
0

0.1

0.2

0.3

0.4

0.5
CSF (LLF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1
MRI (LLF+SAEF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1
PET (LLF+SAEF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

1 2 3 4
0

0.1

0.2

0.3

0.4
CSF (LLF+SAEF)

Feature Index

N
or

m
al

iz
ed

 F
re

qu
en

cy

Fig. 9 Frequencies of the selected ROIs in AD vs. MCI classification. Blue and red bars correspond, respectively, to the original low-level

features and the SAE-learned feature representations
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Fig. 10 Frequencies of the selected ROIs in MCI-C vs. MCI-NC classification. Blue and red bars correspond, respectively, to the original low-

level features and the SAE-learned feature representations
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However, in the ADNI dataset, there is no related infor-

mation. Thus, in our experiments, the HC group could

include both genuine controls and those with subjective

cognitive complaints.

Lastly, we should mention that the data fusion in our

deep learning is considered through a simple concatenation

of the features from modalities into a vector, resulting in a

low performance compared to that of the multi-kernel

SVM. But, in terms of the network architecture, it is lim-

ited as a shallow model to discover the non-linear relations

among features from multiple modalities. We believe that

although the proposed SAE-based deep learning is suc-

cessful to find latent information in this work, there is still a

room to design a multi-modal deep network for the shared

representation across modailities. Furthermore, inspired

from the recent computer vision researches (Ngiam et al.

2011; Srivastava and Salakhutdinov 2012), we can effi-

ciently handle the incomplete data problem (Yuan et al.

2012) with multi-modal deep learning. Therefore, it will be

our forthcoming research issue to build a novel multi-

modal deep architecture that can efficiently model and

combine complementary information in a unified frame-

work. Besides that, while we used the complimentary

information from three different modalities of MRI, FDG-

PET, and CSF in this work, it will be also beneficiary to

consider the genetic risk factor such as the presence of the

allele e4 in the Apoliopoprotein E (ApoE) for our future

work.

Conclusions

Due to the increasing proportion of AD as the cause of

death in elderly people, there have been great interests in

early diagnosis and prognosis of the neurodegenerative

disease in the clinic. Recent neuroimaging tools and

machine learning techniques have greatly contributed for

computer-aided brain disease diagnosis. However, the

previous work in the literature considered only simple low-

level features such as cortical thickness and/or gray matter

tissue volumes from MRI, mean signal intensities from

FDG-PET, and t-tau, p-tau, and Ab42 from CSF.

The main motivation of our work is that there may exist

hidden or latent high-level information inherent in the

original low-level features, such as relations among fea-

tures, which can be helpful to build a more robust diag-

nostic model. To this end, in this paper, we proposed to

utilize a deep learning with SAE for a latent feature rep-

resentation from the data for AD/MCI diagnosis.

While the SAE is a neural network in terms of the model

structure, thanks to the two-step learning scheme of greedy

layer-wise pre-training and the fine-tuning in deep learning,

we could reduce the risk of falling into a poor local

optimum, which is the main limitation of the conventional

neural network. We believe that deep learning can shed

new light on the analysis of neuroimaging data, and our

paper presented the applicability of the method to brain

disease diagnosis for the first time.

The contributions of our work are that (1) to our best

knowledge, this is the first work that considers a deep

learning for feature representation in brain disease diagnosis

and prognosis, (2) unlike the previous work in the literature,

we considered a complicated non-linear latent feature rep-

resentation, which was directly discovered from data, (3) by

constructing an augmented feature vector via a concatena-

tion of the original low-level features and the SAE-learned

latent feature representation, we could greatly improve

diagnostic accuracy, and (4) thanks to the unsupervised

characteristic of the pre-training in deep learning, the pro-

posed method can utilize target-unrelated samples to dis-

cover a general feature representation, which helped to

further enhance classification performance. Using the pub-

licly available ADNI dataset, we evaluated the effectiveness

of the proposed method and achieved the maximum accu-

racies of 98.8, 90.7, 83.7, and 83.3 % for AD vs. NC, MCI vs.

NC, AD vs. MCI, and MCI-C vs. MCI-NC classification,

respectively, outperforming the competing methods.
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