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Abstract: Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a pop-
ular approach for diagnosing various neurodegenerative diseases, including Alzheimer’s disease (AD) and
its prodromal stage, mild cognitive impairment (MCI). Current studies mainly construct the FC networks
between grey matter (GM) regions of the brain based on temporal co-variations of the blood oxygenation
level-dependent (BOLD) signals, which reflects the synchronized neural activities. However, it was rarely
investigated whether the FC detected within the white matter (WM) could provide useful information for
diagnosis. Motivated by the recently proposed functional correlation tensors (FCT) computed from RS-fMRI
and used to characterize the structured pattern of local FC in the WM, we propose in this article a novel
MCI classification method based on the information conveyed by both the FC between the GM regions and
that within the WM regions. Specifically, in the WM, the tensor-based metrics (e.g., fractional anisotropy
[FA], similar to the metric calculated based on diffusion tensor imaging [DTI]) are first calculated based on
the FCT and then summarized along each of the major WM fiber tracts connecting each pair of the brain
GM regions. This could capture the functional information in the WM, in a similar network structure as the
FC network constructed for the GM, based only on the same RS-fMRI data. Moreover, a sliding window
approach is further used to partition the voxel-wise BOLD signal into multiple short overlapping segments.
Then, both the FC and FCT between each pair of the brain regions can be calculated based on the BOLD
signal segments in the GM and WM, respectively. In such a way, our method can generate dynamic FC
and dynamic FCT to better capture functional information in both GM and WM and further integrate them
together by using our developed feature extraction, selection, and ensemble learning algorithms. The experi-
mental results verify that the dynamic FCT can provide valuable functional information in the WM; by
combining it with the dynamic FC in the GM, the diagnosis accuracy for MCI subjects can be significantly
improved even using RS-fMRI data alone. Hum Brain Mapp 38:5019-5034, 2017.  © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form of
dementia in elderly, accounting for about 50% to 80% of
age-related dementia cases [Association, 2012]. It has been
estimated that 1 out of 85 will be suffering from this disease
by 2050 [Brookmeyer et al., 2007]. AD is an irreversible neu-
rodegenerative disease causing progressive cognitive and
memory deficits, which severely interfere with daily life
and may eventually cause death. Currently, there are no
effective clinical treatments for AD. Therefore, accurate
diagnosis of AD at its early stage may have pivotal impor-
tance in preventing progression of detrimental symptoms.
Mild cognitive impairment (MCI), a prodromal stage of
AD, has gained much attention recently since MCI subjects
tend to progress to clinical AD at an annual conversion rate
of 10% to 15%, compared with normal controls (NC) who
develop to AD at much lower annual conversion rate of
approximately 1% to 2% [Petersen et al., 2001]. Thus, identi-
fying MCI subjects has played an important role in helping
reduce the risk of developing AD by appropriate pharma-
cological treatments and behavioral interventions. However,
it is very challenging to identify MCI subjects from those
undergoing normal aging, because of mild cognitive impair-
ment symptoms.

In the past decade, various advanced imaging techni-
ques, such as structural magnetic resonance imaging
(MRI) [McEvoy et al., 2009; Suk et al., 2015; Suk et al,,
2013, Wee et al., 2013], functional MRI (fMRI) [Chen et al.,
2016; Wee et al., 2012a, 2012b, 2015], diffusion tensor imag-
ing (DTI) [Nir et al., 2013; Wee et al., 2011], and positron
emission tomography (PET) [Coleman, 2007; Mosconi
et al., 2010], have provided efficient and noninvasive ways
to acquire structural and functional imaging data of the
human brain. Different imaging techniques can reveal dif-
ferent valuable information and help us better understand
the brain [Li et al.,, 2011]. For example, fMRI [Machulda
et al., 2009; Wee et al., 2015] is able to detect hemodynamic
changes related to neural activities based on the blood
oxygenation level-dependent (BOLD) signals in grey mat-
ter (GM) regions. DTI [Haller et al., 2010; Lee et al., 2013;
Wee et al., 2012a, 2012b] quantifies the anisotropy of water
molecule’s diffusion process occurring in white matter
(WM) tracts, thus providing a feasible way to analyze
nerve fibers in WM and characterize structural connectiv-
ity in the brain. PET [Silveira and Marques, 2010] can be
used to observe metabolic processes and indirectly mea-
sure brain function.

For the purpose of MCI classification, constructing brain
functional connectivity (FC) networks [Rubinov and Sporns,
2010] based on the resting-state fMRI (RS-fMRI), which is
acquired without explicit tasks, has become one of the most
promising methods since MCI and AD are generally
believed to be associated with a disconnection syndrome
within brain networks. The FC is often measured by corre-
lation between RS-fMRI BOLD signals (indirectly measuring
spontaneous neuronal activities) of different brain regions,

which exhibits how structurally segregated and functionally
specialized brain regions, interact with each other [Friston
et al., 1993; Greicius, 2008]. Nowadays, the FC has been rec-
ognized as a crucial imaging biomarker for diagnosing
numerous neurodegenerative diseases, including AD/MCI,
and for understanding pathophysiological mechanisms, as
FC may be altered in both topological structure and
strength of connectivity due to pathological disruptions
[Liang et al., 2015; Qiao et al., 2016; Zhang et al., 2016a].
Numerous methods have been proposed to characterize FC
between brain regions based on the BOLD signals of RS-
fMRI, such as Pearson’s correlation [Zhang et al.,, 2016a],
partial correlation [Jie et al., 2014b], and sparse representa-
tion [Suk et al., 2015; Wee et al., 2015; Wright et al., 2009;
Yu et al., 2017].

Conventionally, FC is assumed to be temporally station-
ary, indicating that the interaction patterns between different
brain regions are fixed across time. However, this assump-
tion may underestimate the complex and dynamic interac-
tion patterns between different brain regions, which has
been confirmed by many recent works [Chen et al.,, 2016;
Damaraju et al., 2014; Hutchison et al., 2013; Leonardi et al.,
2013; Li et al., 2015; Wee et al., 2015]. From this perspective,
exploiting the rich temporal information contained in
dynamic FC (dFC) is a promising way to improve the per-
formance of MCI classification. In this article, we adopt a
sliding window strategy [Chen et al., 2016; Leonardi et al,,
2013; Wee et al., 2015] to partition the whole BOLD signals
into multiple overlapping segments, which is considered a
popular approach for exploring dFC. Specifically, on each
BOLD signal segment, FC is calculated for measuring the
functional relationships between different brain regions dur-
ing a specific time period. In such a way, it can yield dFC
for each pair of brain regions that represents variations of
FC throughout time, which then can be used as new fea-
tures for early AD diagnosis.

Besides RS-fMRI data, diffusion-weighted imaging
(DWI, often called DTI, when analyzed by using the tensor
model) is also used for disease diagnosis. DTI is a conven-
tional in vivo imaging modality to investigate structural
connectivity information in the WM [Jin et al., 2015, 2017].
It measures the anisotropic movement of water molecules
in the brain by using multiple diffusion-weighted gradient
fields. Based on the DTI, the major WM fiber bundles can
be delineated using a tractography approach. DTI is often
used to characterize structural connectivity (SC), rather
than FC, in the WM according to the voxel-wise diffusion
tensors. It should be emphasized that when we refer to
SC, it is commonly believed to be static, i.e., the connectiv-
ity strength is not changing in a short period of time.
Some works [Wee et al.,, 2012a, 2012b; Zhu et al., 2014]
intended to combine the FC information from RS-fMRI
data and the SC information from DTI data, since the rela-
tionship between functional and structural connectivity of
the brain is vital in understanding and interpreting neuro-
physiological findings.
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However, in numerous clinical application studies, it is
impractical to acquire both DTI and RS-fMRI data due to the
significant increase in total scanning time. Thus, many stud-
ies on the brain FC (or the FC-based brain functional net-
works) do not acquire DTI data for WM abnormality
detection. Meanwhile, in some disease-related studies, e.g.,
early detection of AD, the brain FC has been shown to be
more sensitive to pathological changes than SC [Das et al,,
2013; Querbes et al., 2009]. Moreover, previous studies have
also indicated that abnormalities in FC from RS-fMRI can be
detected earlier than abnormalities in SC acquired through
DTI. Therefore, we are aiming to extract more FC-based fea-
tures from RS-fMRI data. A possible solution is to extract FC
information from the WM regions, in addition to the FC fea-
tures usually extracted from the GM regions.

It has been argued that there exist putative and mean-
ingful BOLD fMRI signals in the WM [Gawryluk et al.,
2014]. Previous studies have indicated a large possibility
of having BOLD signals in the WM. For example, task acti-
vation was found in the genu of the corpus callosum,
which connects the GM activation areas [Tettamanti et al.,
2002]. Besides the corpus callosum, fMRI activations have
also been observed in other task-related WM structures,
such as the internal capsule during a swallowing task
[Mosier et al., 1999] and a finger-tapping task [Gawryluk
et al, 2011]. These findings together suggest that the
BOLD fMRI signals do exist in WM regions. The underly-
ing biologically microscopic mechanism may be due to the
existence of the vasculature and the detectability of cerebral
blood flow (CBF) and cerebral blood volume (CBV) in the
WM. Nevertheless, the commonly accepted theory is that
the BOLD signals in the WM are much weaker (with lower
signal-to-noise ratio) than those in the GM, i.e., with only
one-third of the GM BOLD signal change percentage in the
WM [Gawryluk et al, 2014]. Because the task-evoked
response is absent and subject’s state is largely uncon-
strained in the RS-fMRI studies, deriving meaningful func-
tional information from the WM is even more difficult.

Fortunately, in a series of pioneering studies, Ding et al.
[2013, 2016] have proposed a novel concept of “functional
correlation tensor (FCT),” by using a simple and intuitive
way to quantify functional information in the WM based
on a tensor model of each voxel’s local spatiotemporal
BOLD signal correlations. Besides an interesting overall
coherence between the FCT from RS-fMRI and the diffusion
tensor (DT) from DWI in many major WM structures, it was
also found that different functional statuses could modulate
such FCTs in the related WM fibers during visual stimula-
tion [Ding et al., 2016]. These are the first studies indicating
that the FC based on the RS-fMRI BOLD signals in the WM
also carries meaningful functional information. Several
follow-up studies have further validated such findings [Mar-
ussich et al., 2017; Wu et al., 2016, 2017].

Therefore, the FCT can spatially convey static and ana-
tomical connectivity information, but more importantly, it
can measure dynamic and functional information that DTI

cannot provide. In this way, we take a step further to
make bold assumptions and propose in this study that: (1)
the structurally anisotropic FCTs exist in the major WM
fiber bundles; (2) these spatially constrained FCTs carry
informative functional information; and (3) such functional
information can be characterized by dynamic FCT changes
captured by dynamics analysis of the time-varying frac-
tional anisotropy (FA) based on FCT. Because of the unne-
glectable effects of physiological and other sources of
noise on the computation of FCT, we propose a noise-
robust way for computing the dynamic FCT metric by
weighted averaging of the voxel-wise WM fiber tract prob-
ability and the voxel-wise FA across all voxels in each
main WM fiber bundle. We hypothesize that the dynamic
FCT (dFCT), as quantified by the root-mean-square (RMS),
can be used as features from the WM, together with the
RMS of dFC from the GM, which will help early diagnosis
of AD. Our experimental result shows that these two types
of (WM and GM) FC-based features can be jointly used to
provide complementary information for training a strong
classification model for MCI diagnosis. It is worth noting
that this is the first time using FCT in the WM (based on
RS-fMRI) for disease diagnosis.

MATERIALS
Preprocessing of RS-fMRI Data for FC Analysis

In this study, the publically available Alzheimer’s Dis-
ease Neuroimaging Initiative [ADNI, 2017] database
(adni.loni.ucla.edu) is used to provide neuroimaging data.
ADNI was launched in 2003 by research organizations and
companies, such as the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineer-
ing, and the Food and Drug Administration, among
others. The goal of ADNI is to define biomarkers for use
in clinical trials, find the best way to measure the treat-
ment effects of AD therapeutics, and diagnose AD at a
predementia stage.

In this work, 54 MCI patients and 54 NC subjects, which
were age- and gender-matched, were selected from ADNI
database. The images of each subject were acquired using
a 3.0T Philips scanners at centers in different places. The
voxel size is 3.13 X 3.13 X 3.13 mm®. SPM8 software pack-
age (http://www fil.ion.ucl.uk/spm/software/spm8) was
applied to preprocess the RS-fMRI data. The first three
volumes of each subject were discarded to ensure magneti-
zation equilibrium. Rigid-body transformation was then
used to correct subject’s head motion, but the subjects
with large head motion (i.e., larger than 2 mm or 2°) were
discarded. Next, the fMRI images were normalized to the
Montreal Neurological Institute (MNI) space and spatially
smoothed with a Gaussian kernel with full width at half
maximum (FWHM) of 6 X 6 X 6 mm>. We did not per-
form scrubbing to data with a frame-wise displacement
larger than 0.5 mm, as it would introduce additional
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Figure I.
Framework of the proposed method. [Color figure can be viewed at wileyonlinelibrary.com]

artifacts. Subjects who had more than 2.5 min RS-fMRI
data with large (>0.5) frame-wise displacement were
excluded from further analysis. The BOLD signals were
further band-pass filtered (0.015 <f<0.15 Hz) to avoid the
physiological noises and measurement errors.

Generating Major WM Fiber Probability
Template

To measure connectivity within WM, we generated WM
major fiber masks, within which we calculated pair-wise
connectivity based on specific fiber tracts. Currently, there
are several brain WM templates available [Mori et al., 2006],
such as JHU DTlI-based atlas created by hand segmentation
of a standard-space average of DTI images of 81 subjects.
However, only 48 WM tract labels were given in this tem-
plate, which was not compatible with our regions of interest
(RQOI)-based connectivity analysis. Therefore, in this work,
we generated WM atlas using an independent dataset for
our specific need. Concretely, DTI data of 60 subjects were
selected from the Human Connectome Project (HCP)
(http:/ /www.humanconnectomeproject.org/) dataset in
order to construct the major WM fiber probability template.
HCP was started in 2010 and aims to share knowledge
about the structural and functional connectivity of the
healthy human brain. By using advanced imaging instru-
ments, analysis tools, and informatics techniques to con-
struct a human connectome map, it has served as a
foundation for researching changes in brain networks that
occur with age and neurodegenerative diseases, like AD.
After preprocessing DTI data using FSL [Woolrich et al.,
2009], dtifit function in FSL was used to calculate DT for

each voxel. PANDA was then used to generate whole brain
tractography within the brain tissue using FACT algorithm
using the following parameters: minimal seed voxel
FA =0.1, angle threshold =35, and the number of seed at
each voxel = 4. Automated Anatomical Labeling (AAL) atlas
[Tzourio-Mazoyer et al, 2002] which contains 116 brain
regions (or ROIs, regions of interest) was projected back to
each individual’s native space using a deformable DTI regis-
tration algorithm. If two ROIs were connected with more
than 200 streamlines, this pathway was considered as a
major fiber pathway. All of these processes were conducted
at each subject’s native space. All the corresponding major
fibers were transformed to the MNI space and further aver-
aged across all subjects to generate a probability template
for each major fiber. Of all the major fibers, we also counted
how many subjects have the same fibers, and those shared
by over 50% subjects were finally chosen as “putative”
major fiber tracts. As a result, we identified a total of 359
putative major WM fiber tracts.

METHOD

The flowchart of the proposed method is shown in Fig-
ure 1. In summary, it consists of the following steps: (1)
generating dFC from grey matter and also dynamic FCT
(dFCT) from white matter, (2) extracting statistical features
based on root-mean-square of dFC and dFCT, (3) selecting
a few crucial features based on a two-stage feature selec-
tion method, and (4) classifying subjects based on the
ensemble support vector machine (SVM). The detail of
each of these four steps is described in the following
subsections.
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Generating Dynamic FC from GM

The RS-fMRI data of each subject was parcellated using
the AAL atlas with 116 ROIs [Tzourio-Mazoyer et al.,
2002]. In order to capture the nonstationary interactions
between different ROIs, the RS-fMRI BOLD signal from
each voxel was partitioned into multiple overlapping seg-
ments with a sliding window approach. Specifically, let M
be the total length of image volumes, N be the length of slid-
ing window, and s be the step size between two successive
windows. Then, the total number of segments is
K=[(M—N)/s|. On each segment, within the GM, a regional
mean BOLD signal can be calculated by averaging the BOLD
time series over all voxels inside each ROI, reflecting the
regional neural activity occurring during a relatively short
period. Suppose the Pearson’s correlation coefficients (PCC)
between ROI i and ROI j on the kth sliding window is
denoted as CZ Then, we can get interregional dFC, denoted
as dFC;= [C}j, L
of FC between ROI i and ROI j. An illustration of dFC; from
GM is shown in Figure 1. Note that, due to the symmetry of
Pearson’s correlation, the number of dFC is 6670, equaling to
the total number of ROI pairs.

e C,ﬂ , which measures the dynamics

Generating Dynamic FCT From WM

To compute FCT, we focused on the voxels in WM. In
parallel to the case above, a sliding window approach was
first used to partition the BOLD signal from each voxel
into K overlapping segments. For a voxel V, in WM, its 3

X 3 X 3 neighborhood, comprising a total of 26 first-tier

neighboring voxels {Vp] v Voo Vg }, was defined.
Based on the BOLD signal segments within the kth sliding
window, the PCC C’;% between voxel V, and its neighbor-
ing voxel V,(q=1,2,---,26) calculated, which
together characterized the local profile of 26 temporal cor-

relations along their respective directions during a short
period. Define a 3 X 3 dyadic tensor D, as

was

— T
Dy p, =1 p, 1,

where 1, is a 3 X 1 unit vector, such that D, contains
only one nonzero eigenvalue with the corresponding
eigenvector pointing to the direction from V, to V), . Then,
a3 X 3 FCT T’; is defined for V, as a weighted combina-
tion of all Dy, [Ding et al., 2016]:

26
k k
Tp - Z CMD P+bq
p=

Geometrically, FCT T* amounts to a three-dimensional
ellipsoid where three mutually-orthogonal axes character-
ized the directions and magnitudes of FC around V,. By
performing eigen-decomposition on Tf,, we obtained its

eigenvalues Li,%, k3 and eigenvectors, which represented
the dominant directions of 26 temporal correlations. To
statistically summarize local anisotropy of temporal corre-
lations, similar to the case of FA calculation based on DT
in DTIT studies, a FA value was calculated for V:

FAk_\f\/(xl—x)%(xz—x)%(xg—x)
rov2 NEESTIvY:

where & denotes the mean value of all eigenvalues. The
above procedure is shown in Figure 1. By repeating the
FCT and FA computation for all voxels in WM, we
obtained a FA map of FCT on the kth sliding window.
Next, for each pair of ROIs i and j in 359 major fiber proba-
bility templates constructed in Generating Major WM Fiber
Probability Template section, we calculated a weighted mean
FA value FAg- by combining the fiber probability map with
the FA map, representing an overall anisotropy of the
FCT in the WM tracts linking the two GM ROIs. For
each subject, repeating the above process for each sliding
window generated 359 time series, each of which was
referred to as dFCT in this work and denoted by

dFCT;= [FA}]-, - FAE, . ,FAﬂ. Similar to the dFC; in the
above section, dFCT}; characterized the temporal dynamics
of the FA values in the WM tracts linking ROI i and ROI j.

An illustration of dFCT is also shown in Figure 1.

2

Feature Extraction

In this study, we treated both dFC and dFCT as two types
of discrete signals extracted from different pairs of ROlIs.
These signals formed bases for further diagnosis. To extract
features from these signals, we calculated the RMS for each
signal, which defined a statistic to measure the magnitude of
varying metrics. Specifically, the RMS feature for a discrete

signal dFC;=[C}, -+, C,-

i i

~~,Clﬂ was given by

s (@)’

RMS(dFC;) = <

RMS value, also known as the quadratic mean in mathe-
matics, represented the fluctuation level of the signals
because its power was directly proportional to the square
of RMS value [Altahat et al., 2012; Dey, 2014]. As a result,
for dFC of each subject, a total of 6670 RMS features,
which form a high-dimensional feature representation,
was generated. Similarly, for dFCT of each subject, a total
of 359 RMS features was generated.

Feature Selection and Classifier Learning

The number of RMS features is much larger than that of
subjects, especially for dFC; and more importantly, many
features may be irrelevant to the classification task.
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Directly training a machine-learning model on high-
dimensional small sample data tends to yield poor gener-
alization performance because of the overfitting phenome-
non [Chen et al,, 2013, Zhang et al., 2017]. In addition, it
also makes interpretation of the results quite difficult. To
overcome the problems above, feature selection [Jie et al.,
2014a; Ye et al., 2012] is necessary for reducing the number
of features before building a classification model.

In this work, a two-stage feature selection procedure was
developed to select a subset of the original features, which
was crucial for classification. Specifically, in the first stage,
a two-sample t-test, which had been applied widely in the
neuroimaging pattern analysis, was performed between
MCI subjects and NC subjects for each original feature.
Then, the features were ranked according to their individ-
ual discriminative capability indicated by corresponding
p-values. Only the features with p-values smaller than a
given threshold were retained, while the remaining were
screened out. The resulting features after the t-tests,
although highly relevant to the class label, may still have
contained redundant information. Therefore, in the second
stage, LASSO regression was used to further optimize the
feature subset. Different from the f-test performed on each
feature individually, LASSO regression [Tibshirani, 1996;
Zhang et al., 2016b], which accounts all features jointly,
keeps only the most discriminative features, while discard-
ing the redundant ones. Let X € R"*" be the sample matrix,
where m is the number of samples and 7 is the number of
features selected by the t-tests, and y € R™ be the label vec-
tor of samples, where y;=1 if the ith subject is MCI and y;=
—1 if the ith subject is NC. Then, the LASSO regression
was formulated as the following cost function:

. 1
mmw,b)ixu Xw+b—y |P+AX|| w |

where w=[w, -, wj, - ,w,,]T € R", and w; is the weight for
the ith feature, b is a bias term. X is a balance parameter con-
trolling the model sparsity based on the /j-norm regulariza-
tion. The larger the value of 2, the sparser the model [Zhang
et al, 2017]. Finally, only those features with non-zero
weights w; were eventually retained.

Considering different characteristics of the features
extracted from GM and WM regions, two SVM classifiers
were constructed based on the respective feature subsets.
SVM seeks a separation plane between training samples of
different classes by maximizing the margin, meanwhile
minimizing the classification errors. Balance between empir-
ical risk and model complexity improved the generalization
performance on unseen samples. To generate a final classifi-
cation, the two SVMs were integrated at the decision level,
that is, the scores from SVMs were fused by linear combi-
nation with a weight reflecting the importance of dFC.

EXPERIMENTS

To evaluate the effectiveness of the proposed method,
we performed experiments by comparing with some

related methods, including static functional connectivity
(sFC), static functional correlation tensor (sFCT), dFC,
dFCT, and two integrated methods, such as (1) combined
sFC and sFCT (sComb) and (2) combined dFC and dFCT
(dComb). For static cases, i.e., sFC and sFCT, there were
two main differences from their dynamic counterparts.
One was that the whole BOLD signal from each voxel in
RS-fMRI was employed, without using any sliding win-
dow approach. The other was that we directly calculated a
single PCC value and a single FA value for each of all pos-
sible connections between any two ROIs. Note that, for
such sFC and sFCT analyses, we could not produce any
dynamic time series for these metrics, and thus could not
extract RMS features. Specifically, the pairwise FC value
based on the whole BOLD signals from each pair of the
ROIs were used as the sFC feature; and we followed the
same computation procedures of FCT (in Feature Extraction
section) based on the whole BOLD signals and then calcu-
lated a weighted mean FA value for each pair of the ROIs
from the resulting FCT maps as a sFCT feature. Note that
sFC and dFC were constructed from GM regions, while
sFCT and dFCT were from WM. For the subsequent feature
selection and classification, all methods followed the same
flowchart, so that different methods could be compared
fairly.

In the experiments, due to limited samples, a leave-one-
out (LOO) cross-validation was applied to benchmark the
generalization performance of different methods. Specifi-
cally, given a total of L subjects, L—1 subjects were used
as training data in order to obtain a model, which was
subsequently evaluated by the rest subject in terms of the
classification accuracy. The procedure above was repeated L
times, where at each time a different subject was used as a
test data, and the averaged classification result across L
times was finally reported. The parameters in each method
were tuned based on the L—1 training subjects by a nested
LOO cross-validation. The parameter A in LASSO regression
was chosen by grid search from the set of {0.1,0.2,---,0.8}.
All methods were implemented in MATLAB environment.
For sFCT and dFCT, we only performed the LASSO-based
feature selection because many ROI pairs without notable
anatomical connections were already screened out during
the whole-brain streamline fiber tractography and only 359
ROI pairs were retained. For sFC and dFC, we performed a
two-stage feature selection where the two-sample paired t-
test with a significance of p =0.05 was applied in the first
stage. This was because for sFC and dFC, all 6670 pairs of
ROIs were considered, which generated a much higher
dimensionality. SLEP toolbox [Liu et al., 2009] was used to
implement LASSO-based feature selection. LIBSVM library
[Chang and Lin, 2011] was used to implement SVM classifi-
cation by using the default parameter value (ie., C=1). For
the sliding window approach, we simply allowed the win-
dow length be 30 and step size 1. Note that both feature
selection and SVM training were carried out within the
LOO cross-validation stage for fair comparison.
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TABLE I. Performance of different methods in MCI
classification

TABLE Il. Nonparametric statistical significance test
based on DeLong’s test

Method ACC SEN SPE AUC F-score  Method sFC sFCT  sComb dFC dFCT  dComb
sFC 62.04 61.11 62.96 0.6529 61.68 sFC — — —_ — — —
sFCT 66.67 62.96 70.37 0.6896 65.38 sFCT 0.6364 — — — — —
sComb 69.44 68.52 70.37 0.6954 69.16 sComb 0.5103  0.9035 — — — —
dFC 74.07 70.37 77.78 0.7746 73.08 dFC 0.0343 0.2288  0.1766 — — —
dFCT 71.30 70.37 72.22 0.7397 71.03 dFCT 02014 0.2818 03775  0.6119 — —
dComb 78.70 77.78 79.63 0.8449 78.50 dComb  0.0003 0.0056 0.0006 0.0088  0.0365 —

Comparison of Classification Performance

To evaluate the performance of different methods, we
employed the following five indices: accuracy (ACC), sen-
sitivity (SEN), specificity (SPE), area under the receiver
operating characteristic (ROC) curve (AUC), and F-score
[Sokolova et al., 2006]. Let TP, TN, FP, and FN to denote
true positive, true negative, false positive, and false nega-
tive, respectively, where the controls were considered as
the null distribution. On the other hand, the definitions of
ACC, SEN, SPE, and F-score are given as follows:

TP+TN
TP+TN+FP+FN
P
SEN

ACC=

~ TP+FN

PE=_ -
S TN+FP
—ox precisionXrecall

F—score TSI T
precision+recall

where precision= %, and recall= ﬁ As we can
see, ACC measures the proportion of subjects correctly
classified among all subjects, SEN and SPE represent the
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Figure 2.
ROC curves of different methods for MCI classification. [Color
figure can be viewed at wileyonlinelibrary.com]

proportions of MCI patients and NC correctly classified,
respectively, and F-score considers both precision and
recall together. The ROC curve is a plot of SEN versus 1-
SPE over all possible values of discrimination threshold.
The classification performance of the proposed method
and other related methods are summarized in Table I,
where the best scores are highlighted in bold. Figure 2
plots the ROC curves for different methods.

As shown in Table I, in static cases, FCT achieved higher
accuracy than FC. It may be because the available func-
tional correlation information from GM is limited in such a
case, while FCT, in contrast, can incorporate valuable func-
tional information from WM to assist the diagnosis of MCI.
Moreover, the combination of both achieves superior per-
formance than either sFC or sFCT individually. It indicates
that the FC information from GM and WM regions can pro-
vide complementary information in MCI diagnosis. More
interestingly, we can observe that, in dynamic case, FC
gains larger performance improvement and eventually out-
performs FCT. This verifies that the time-varying correla-
tion between ROIs can provide rich information compared
with the static case. This phenomenon has been observed in
many recent studies, e.g., in Chen et al. [2016] and Wee
et al. [2015]. Furthermore, the integration of dFC and dFCT
has achieved the best performance in terms of all indices.
For instance, it outperformed individual dFC by 4% and
individual dFCT by 7% in diagnosis accuracy. In order to
implement a nonparametric statistical significance test, we
followed DeLong’s test [DeLong et al., 1988], which allowed
for the comparison of the two AUCs calculated on the same
dataset. The pairwise test results under the 95% confidence
interval are shown in Table II, where the p values less than
0.05 are highlighted in bold. As we can see from Table II,
our proposed dComb, which combines dFC and dFCT, sig-
nificantly outperforms all other methods under 95% confi-
dence interval. This demonstrates that the incorporation of
the dynamic FC information in the WM is also helpful for
improving the classification performance.

In addition to the LOO cross-validation, we also evalu-
ated all methods by using 20-fold cross-validation, which
had been widely adopted in previous studies [Salvatore
et al., 2015]. To reduce the influence of randomness in data
partition, we repeated this 20-fold cross-validation 10 times,
and reported average accuracy and standard deviation in
Figure 3. Consistent with the results from LOO cross-
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Figure 3.
Performance comparison using 20-fold cross-validation. [Color
figure can be viewed at wileyonlinelibrary.com]

validation, using 20-fold cross-validation also shows that
the combination of dFC and dFCT features achieved the
best performance. Thus, this study has certain practical sig-
nificance in future clinical studies, as it brings significant
performance improvement without acquiring DTI data. As
a result, total scanning time and imaging costs can also be
reduced.

Note that the RS-fMRI based MCI diagnosis has
attracted increasing interest from the neuroimaging com-
munity, with many research works presented in the litera-
ture. For example, Challis et al. [2015] applied Bayesian
Gaussian process logistic regression (GP-LR) as classifier
to the diagnosis of MCI and AD subjects, which achieved
a similar accuracy as our method. However, in addition to
FC information, the above article also used age and mini
mental state examination (MMSE) scores as features in
classification. In contrast, our method did not use such fea-
tures, instead only used RS-fMRI data. We also noticed

that many other studies dealt with similar problems as our
study. However, in contrast to those methods, our study
simultaneously considered both the dynamic variations of
the conventional FC from the GM and the anisotropic local
FC patterns, i.e., FCT, from the WM.

Figure 4 shows the temporal variations of FC and the
weighted mean FA values associated with the left anterior
cingulate gyrus (ACG.L) and the left posterior cingulate
gyrus (PCG.L), as well as the left posterior cingulate gyrus
(PCG.L) and the right posterior cingulate gyrus (PCG.R)
for one subject, when using the sliding window approach.
As demonstrated, the interregional interaction actually
undergoes a large variation over the entire duration of the
RS-fMRI scan. For example, not only the magnitude but also
the direction of the interregional correlation had changed for
PCG.L-PCG.R pair. This indicates a rather complex interac-
tion relationship between ROIs, which should be modeled
elaborately and leveraged for the diagnosis.

Most Discriminative Connections

In this subsection, we present the discriminative connec-
tions associated with ROI pairs revealed by our method.
The feature selection process evaluates the relevance of
each connection with respect to classification, and selects a
few connections contributing to the linear classification
model. Note that, due to the different training sets in LOO
cross-validation, different sets of discriminative connec-
tions might be selected in each evaluation procedure.
Therefore, we computed the total frequencies of each con-
nection across all LOO cross-validations and sorted the
results according to the resulting total frequencies. Similar
to Wee et al. [2016], the connections with the highest fre-
quencies during the LOO cross-validation were selected as
the most discriminative connections. The reported results
are based on the original AAL atlas (with 116 ROIs) for
illustration [Fox et al., 2005]. Figure 5 shows some most
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Figure 4.
Dynamic variation of (a) FC and (b) weighted mean FA for connections ACG.L-PCG.L and
PCG.L-PCG.R. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5.
lllustration of top 10 ROI pairs selected with the highest frequencies. (a) dFC, and (b) dFCT.
[Color figure can be viewed at wileyonlinelibrary.com]

frequently selected connections, as well as the associated
ROI pairs, from dFC and dFCT. The node represents ROI,
and the edge represents connection, i.e., a pair of ROIs
contributing to classification.

As implicated from these experimental results, many
connections of the default mode network (DMN) are
selected, such as the precuneus, posterior cingulate cortex,
middle temporal gyrus, middle orbitofrontal cortex, supe-
rior orbitofrontal cortex, and parahippocampal gyrus. It is
generally accepted that the DMN plays an important role
in high-level cognitive functions, while abnormality of the
DMN can be observed across a range of neurological dis-
orders [Buckner et al.,, 2008]. Besides the DMN, other
selected regions that may be important for early AD diag-
nosis are mainly the frontal areas, including the inferior
orbitofrontal cortex, opercular inferior frontal gyrus, olfac-
tory cortex, precentral gyrus, and paracentral lobule, thus
indicating the importance of the frontal lobe for early diag-
nosis of AD.

Another main brain lobe suggested by our study to
have potential diagnostic values is the temporal lobe,
including the Heshl’s gyrus, the superior and middle tem-
poral pole, the amygdala and the parahippocampus, thus
indicating that the temporal lobe could be another

important brain lobe that is attacked by AD pathology
[Echavarri et al., 2011; Poulin et al., 2011; Wee et al., 2015].

Other regions with potential diagnostic values include:
the middle occipital gyrus, fusiform gyrus, the calcarine sul-
cus in the occipital lobe, and the putamen in subcortical
regions, as well as several cerebellar areas, including the
cerebellum lobules IX and X, lobule III of vermis, and lob-
ule X of vermis. Most of these selected ROIs are consis-
tently shown to be related to AD pathology in the previous
studies [Adriaanse et al., 2014; De Jong et al., 2008].

Next, we discuss the potential biomarkers for future
studies as indicated by our results from two aspects: dFC
and dFCT analysis.

Based on the dFC analysis, several connections between
the cerebral and cerebellar regions are suggested as impor-
tant features. The cerebellum is often involved in motor
learning, reflex adaptation, and other cognitive functions.
AD pathology could not only lead to synaptic alterations
[Baloyannis et al., 2000] in some cerebellar regions and
cerebral regions (mostly in the frontal areas) [Braak and
Braak, 1991] in MCI subjects, but also alter the indirect
(via the relay of the thalamus and/or pons) long-range
pathway between the cerebral and cerebellar regions, thus
resulting in abnormal cognitive function (see the review in
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Distributions of RMS features selected from (a) dFC(IFGoperc.L.-OLFR) and (b) dFCT(ORB-
mid.L-ORBinf.L) in MCI and NC subjects, respectively. [Color figure can be viewed at wileyonli-

nelibrary.com]

Egidio and Stefano [2012] for more details). However, few
previous studies have shown such a long-range cerebro-
cerebellar functional connectivity abnormality in the early
stage of AD, especially for the subjects without observable
structural difference [Hanyu et al., 1993; Meoded et al.,
2015]. Our result suggests that, by using dFC, we can
detect subtle changes in the large-scale cerebrocerebellar
functional integration for MCI subjects. However, by using
traditional static FC, such changes can be difficult to detect
during early stages.

From dFCT analysis, our results show some noticeably
clustered connections with aberrant dynamic FCT profiles
in the prefrontal cortex (mostly in the orbitomedial pre-
frontal areas), which coincides with pathological signa-
tures of AD. For example, in the prodromal stage of AD,
the neurofibrillary tangles and amyloid plaque deposition
are localized mostly in the entorhinal cortex and the orbi-
tomedial prefrontal areas [Braak and Braak, 1991]. This
AD pathology-based staging model, in its very beginning,
is quite consistent in the spatial pattern with our most dis-
criminative dynamic FCT features (see Fig. 5b). It is well
known that the prefrontal cortex plays an important role
in decision making, attention control, and other high-level
cognitive functions [Grady et al., 2001]. We speculate that
this result is mainly because the FCT is computed from
the WM and could reflect local-range FC pattern. The local
FC changes may be more sensitive to the local pathological
changes caused by the progression of AD. Therefore, we
propose that the dFCT might be better suitable for serving
as an effective early biomarker for diagnosis of AD, specif-
ically in the prodromal stage.

Figure 6a,b shows the distributions of RMS features in
MCI and NC subjects associated with a single connection
selected from dFC and dFCT, respectively. For dFC, this
connection is between the left inferior frontal gyrus (oper-
cular) (IFGoperc.L) and right olfactory cortex (OLE.R),

while for dFCT, this connection is between the left orbito-
frontal cortex (middle) (ORBmid.L) and left orbitofrontal
cortex (inferior) (ORBinf.L). As evident from Figure 6,
although dFC shows slightly better separability than
dFCT, a single connection either from dFC or from dFCT
merely provides limited discriminating capability, while
multiple connections chosen together through feature selec-
tion procedure can achieve better diagnosis accuracy for
MCI, as verified by the experimental results shown in Table
I and Figure 3.

In summary, these findings show that the disruptions of
functional connectivity are widespread across the brain of
MCI subjects even at its preclinical stage. The dFC and
dFCT both reveal interesting and complementary informa-
tion for clinical diagnosis.

Balance Between FC and FCT in Ensemble
Classification

In ensemble classification, the weight for FC determines
its contribution compared to FCT. A larger weight indi-
cates the larger contribution of FC to the classification and
vice versa. Thus, we investigate the variation of classifica-
tion accuracy with respect to weights in both dynamic and
static situations. The classification accuracy and AUC
value of the proposed method are shown in Figure 7.

It can be observed that, for static and dynamic cases, FC
and FCT shows different importance. In the static case,
higher classification accuracy is achieved when using
small weights. A similar trend can be observed for the
AUC values. This implies that the FCT constructed from
WM regions plays a more important role than the FC con-
structed from GM regions. In contrast, in the dynamic
case, a large weight can lead to better performance, indi-
cating the dominance of information carried by FC from
GM regions in the classification.
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Performance of the proposed method with respect to the weight for FC. (a) Accuracy and (b)
AUC. [Color figure can be viewed at wileyonlinelibrary.com]

Computation Time

After training the classification model offline, the most
discriminative features as well as the weights in SVM
model can be determined. As a result, we only need to com-
pute these selected features, instead of checking all ROI
pairs or all major WM tracts. For a new subject, the total
computational time is about 80 min. However, we should
notice that the computations on each sliding window and at
each WM voxel are essentially independent and thus are
parallelizable. For example, if all computations on 108 slid-
ing windows are performed in parallel, the computational
time for a new subject will be about 100 times shorter than
the unparalleled situation. After efficient optimization of our
method, it can possibly be applied to disease diagnosis in
the clinical setting.

DISCUSSION
Evaluation of Connection Importance

There are many dedicated ways [Haufe et al., 2014] to
reveal the importance of connections in multivariate analy-
sis models, such as the product measure, dominance anal-
ysis, proportion marginal variance decomposition, relative
weight, as well as bootstrapping. Different methods may
generate different results due to different implications of
“importance.” In this study, we follow a widely adopted
method in the MCI diagnosis related literature [e.g., Jie
et al., 2016; Wee et al., 2015], by calculating the frequency
of each connection chosen by the feature selection process
across all the LOO cross-validation iterations. The more
frequently selected, the more reliable and robust are those
selected connections. Therefore, the reliability and robust-
ness can be regarded as one of the measurements of the
feature importance in diagnosis. Furthermore, the connec-
tions can be sorted according to their frequencies being
selected, with the most frequently selected connections

shown in Figure 5 for illustration. Note that these fre-
quently selected connections are determined in a data-
driven way based on feature selection and the label infor-
mation of all subjects. Before feature extraction, we did
not arbitrarily choose any features from any predefined
brain regions based on any hypothesis— that is, the bio-
marker detection is conducted in an exploratory manner.

On the other hand, the bootstrapping method can be
used to define another type of “importance” based on
each feature’s contribution to the final classification perfor-
mance. In this method, by randomly changing the subjects’
labels, we can conduct another round of “classification”
(under the null hypothesis) based on the randomized
labels, from which the weight (and also the frequency of
being selected) for each feature can be derived. By includ-
ing randomization and classification of multiple times, we
were able to generate a null hypothesis of each feature’s
weight and also a null hypothesis of each feature’s selection
frequency. Then, we can obtain a p-value for each feature
according to the comparison with the null distribution.
Since there are multiple comparisons, the p-values can be
further corrected based on multiple comparison correction
(e.g., Bonferroni correction) in order to find out those signif-
icantly important features.

Biomarkers and Longitudinal Study

In order to discover potential biomarkers, many previous
studies utilized the conventional mass-univariate analysis
methods, such as general linear modeling, two-sample t-test
[Zhang et al., 2015, 2016a], and correlation analysis, to eval-
uate one feature by another feature independently.
Although these types of methods can reveal features that
are correlated with the disease, it can potentially ignore the
nontrivial interactions among these features, which may
lead to a group of weighted features or a pattern with
higher sensitivity to disease detection. In contrast, our study
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is based on the multivariate analysis method, which investi-
gates all features together and utilizes advanced machine
learning algorithms to automatically determine the relation-
ships between the combination weights among different
features, as well as their relevance to the disease. In addi-
tion, our study is for individualized detection, while most
of the previous mass-univariate analysis derived only the
group-level statistical inference, which could not be applied
directly to individualized detection. This is another differ-
ence between our study and traditional group-level statisti-
cal analysis methods, and also one of the motivations of
our work.

Cortical thickness is another important biomarker for
detecting AD-related brain morphometric changes. Its cal-
culation is simple, robust, reliable and requires only a T1-
weighted image, which usually has the highest priority
compared to all other imaging modalities scanned during
MRI data acquisitions. In an AD patient’s brain, the brain
regions that are responsible for memory, language,
problem-solving, and other high-level cognitive functions
may appear smaller in volume and thinner in cortical
thickness because of the neuronal death, when compared
to normal aging subjects. Previous studies have already
shown various effective cortical morphological features,
such as cortical thickness, sulci depth, surface area, grey
matter volume and mean curvature, for MCI classification
[Li et al., 2014]. However, there are also many studies
[Das et al., 2013; Querbes et al., 2009] suggesting that the
changes in functional connectivity may occur even earlier
than those detectable changes in the above-mentioned ana-
tomical, geometric and morphometric features [Zhang et
al., 2016d]. With this commonly accepted hypothesis in
mind during the design of the current study, we decided
to use the features of various FC metrics for early diagno-
sis of AD, with higher detection sensitivity. Besides the
conventional FC metric in the GM, we also explored the
discriminative ability of FCT, computed from the WM
beneath the brain cortex, where AD pathological changes
could also occur.

Many studies [Misra et al., 2009; Lo et al., 2011] have
focused on the trajectory modeling of longitudinal func-
tional and structural imaging data in order to better
understand the relationship between imaging-based bio-
markers and cognitive or behavioral decline in AD/MCI
populations. In contract to longitudinal studies, we
attempt to classify MCI from NC subjects based on their
cross-sectional RS-fMRI data. In particular, this work
emphasizes the roles of dFC as well as dFCT as the poten-
tial biomarkers for accurate diagnosis of MCI subjects.
Note that several of these potential biomarkers detected by
our study are shared by the biomarkers suggested by pre-
vious longitudinal studies [Yang et al., 2012], such as the
frontal lobe and paracentral lobule. More importantly, the
dFC and dFCT biomarkers suggested by our study can be
used as the potential biomarker candidates in the future
hypothesis-orientated longitudinal studies for more

comprehensive characterization of the trajectory of the
neurodegeneration. Of note, several features detected by
our study are new to the field, since the dFCT features in
the WM structures are completely new in early AD
detection.

Another useful implication of our study is that we use
brain FC dynamics as features, whereas previous studies
usually used static FC (calculated based on the whole
BOLD signals). We argue that the functional dynamics-
based features can be more sensitive to AD pathological
changes than the traditional static FC, since in the early
stage the FC may not show detectable differences between
MCI and NC subjects [Zhang et al., 2016¢]. Therefore, our
proposed features can also be applied to longitudinal stud-
ies for detecting abnormal degenerative trajectory. One of
our ongoing works is to apply the FC dynamic informa-
tion into a model of AD progression. Thus, we will be
able to investigate brain functional changes at different
stages of AD, and then differentiate the stable MCI from
the progressive MCL

Preprocessing and Reliability

Head motion during the RS-fMRI scan is a confounding
factor that could have significantly influenced both the
functional connectivity measurement and the complex
brain functional network measurement, which may lead to
drastic changes or spikes in the BOLD signals across the
entire brain. There are many works focusing on the influ-
ence of the head motion on FC estimation, as well as nec-
essary preprocessing procedure to reduce such an effect
[Power et al., 2012; Van Dijk et al., 2012]. In our work, the
rigid-body transformation was used to correct subject’s
head motion, and the subjects with large head motion (i.e.,
larger than 2 mm or 2°) were discarded in order to reduce
potential influences. We did not perform data scrubbing to
remove or resample the frames with frame-wise displace-
ment larger than 0.5 mm, as scrubbing itself will interrupt
the temporal structure of the data and probably introduce
artifacts into the subsequent dynamic analysis [Hutchison
et al.,, 2013]. However, we only included the subjects who
had more than 90 frames with acceptable micro-head
motion (frame-wise displacement <0.5), as suggested by
previous studies [Wu et al., 2015].

On the other hand, band-pass filtering is also an impor-
tant preprocessing step that may influence FC analysis. In
our work, the BOLD signals were band-pass filtered
(0.015<f<0.15Hz) to reduce the potential effect of the
physiological noises. However, there are some studies [Sal-
vador et al., 2008] showing that neuronal oscillations at
distinct frequency bands have different physiological
properties, and such inherent frequency-specific property
of BOLD spectrums contributes differently to FC estima-
tion. Therefore, a straightforward extension of this work is
to consider multiple frequency bands, instead of a single
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one, as well as to include FC or FCT features from differ-
ent frequency bands.

Other imaging acquisition and preprocessing factors
contain spatial resolution, flip angle, global signal regres-
sion, etc. A thorough exploration of all these factors and
their combinations, as well as their influences on the clas-
sification results, is complicated and beyond the scope of
this article. Additionally, data across studies may have dif-
ferent noise levels and artificial sources, thus making the
problem even harder to investigate. Future studies should
focus on optimizing strict preprocessing steps in order to
provide homogenous parameters between disparate
studies.

Test-retest reliability is also an important issue that
deserves further dedicated study. There are many test-
retest reliability studies on the static FC. For example, it
has been suggested that the test-retest reliability of the
static FC is fair-to-good when examined in both region-
[Wang et al., 2011] and voxel-wise manners [Shehzad
et al., 2009; Somandepalli et al., 2015], and the static FC-
based brain network properties are still satisfactorily reli-
able [Andellinia et al., 2015]. However, there are few test-
retest reliability studies on dynamic FC or dynamic FCT.
Abrol et al. [2016] are of the few that have evaluated the
reproducibility of properties of functional network connec-
tivity (FNC) dynamics using the sliding window approach
across different data sets. As the fMRI data used in our
study was acquired during the resting state, there was no
explicit task conducted and the subjects’ statuses were
unconstrained. Therefore, the dynamic FC and FCT pro-
files cannot be directly compared across subjects due to
the absence of phase locking. In addition, considering that
the used RS-fMRI data in the current study does not incor-
porate repeated scans, we cannot conduct test-retest reli-
ability assessment to investigate whether the RMS of the
dynamic FC and FCT is reliable or not across the scanning
sessions. Nevertheless, test-retest reliability will be investi-
gated in our future study.

Future Directions

In this article, RMS serves as a feature reduction way,
although other methods of generating features from each
sliding window will produce much more features for each
subject. However, in this article, RMS is mainly selected
based on the two considerations. First, RMS is able to
characterize the overall activity level of dynamic FC and
dynamic FCT. Second, RMS is invariant to the chronologi-
cal order of sliding windows as temporal information col-
lapses based on the definition of RMS. Using features
from each sliding window could initiate the problem of
phase mismatching across different subjects due to inclu-
sion of temporal information. In this case, utilization of
temporal features becomes another difficult problem. One
possible solution is to further extract time-invariant high-
level features based on sliding-window features, such as

distribution- and frequency-spectrum-based or status-
transformation-probability-based features. Besides RMS,
other statistics can also be used to extract features from
the time series, such as entropy, Hurst index, kurtosis, etc.
Since different features characterize the same signal from
different viewpoints, combining them appropriately is
likely to further improve the outcomes.

CONCLUSIONS

In this article, we have presented a novel framework to
integrate temporal correlation information extracted from
both GM and WM regions for automatic MCI diagnosis.
On one hand, dynamic functional connectivity between
brain regions is estimated based on the regional mean
BOLD signals in the GM regions. On the other hand,
dynamic functional correlation tensor between brain
regions is built based on functional anisotropy of the vox-
els lying on the WM fiber tract linking brain regions. Root-
mean-square features are used as feature representation,
while a two-stage feature selection, as well as a classifier
ensemble approach, may also be developed for classifica-
tion. The experimental results show better diagnostic
power by integrating connectivity information from both
GM and WM regions. This work suggests the RS-fMRI
BOLD signals observed within WM, although weaker than
those observed within GM, can provide complementary
information for MCI classification.
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